
International Journal of Innovation in Science and Mathematics 

Volume 11, Issue 2, ISSN (Online): 2347–9051  

Copyright © 2023 IJISM, All right reserved 

35 

A Parallel Implementation of SOR Method 

 

Xiaorong Zhu
1*

 and Yumei Huang
2
 

1
College of Information Science and Technology, Taishan University,Taian, China. 

2
College of Information Science and Technology, Taishan University, Taian, China. 

 
Date of publication (dd/mm/yyyy): 31/03/2023 

Abstract – Jacobi iteration and SOR iteration are the basic methods for solving linear equations, but the 

appearance of parallel computers makes people notice that they have significant differences in parallel processing 

performance. Jacobi iteration has very obvious intrinsic parallel computing characteristics, while SOR intrinsic 

parallelism is far worse than Jacobi iteration. In this paper, we give the PPSOR iteration and prove that it has the 

performance of full parallelism, so we find a parallel implementation of SOR. 

Keywords – Iterative Method, SOR Method, Parallel Implementation, Equations, Parallel Point SOR. 

I. INTRODUCTION 

Many problems in natural science and engineering technology can be reduced to solving linear algebraic 

equations, such as network problems in electricity, ship mathematical lofting problems, curve fitting of 

experimental data, etc. The coefficient matrices of these equations can be roughly divided into low-order 

DENSE matrices (order less than 150) and large sparse matrices (matrix order higher and more zero elements) 

[1]. 

Iterative method is an important numerical method for solving large sparse matrix equations. The so-called 

iterative method is to approach the exact solution of linear equations gradually by some iterative process. It has 

the advantages of less memory units of computer, simple program design and constant original coefficient 

matrix in the calculation process, but there are some shortcomings in convergence and convergence speed. 

Iteration methods include Jacobi iteration Method and Successive Over Relaxation Method (SOR method for 

short). Among them, Jacobi iteration has very obvious intrinsic parallel computing characteristics [2.3.4]. SOR 

method has simple calculation formula and easy program design. It consumes less computer memory, but needs 

to select the best relaxation factor and its inherent parallelism is far less than Jacobi iteration. This paper tries to 

find a suitable parallel implementation of SOR. 

II. BASIC METHODS 

A. Jacobi Iteration Method  

With equations
1

( 1, 2, )
n

ij j i

j

a x b i n


  , and its matrix form to 

Ax b                                             (1) 

Among them A  is nonsingular matrix and 0( 1, 2, ),iia i n  and split A  into ,A D L U    then  

11

,

0

0 nn

a

D

a

 
 

  
 
 

21

31

1 2

0

,

0n n

a

L a

aa

 
 
 
  
 
 
 
 

12 1

2

0

0

n

n

a

a
U

a 
 
  
 
 
 

. 



International Journal of Innovation in Science and Mathematics 

Volume 11, Issue 2, ISSN (Online): 2347–9051  

Copyright © 2023 IJISM, All right reserved 

36 

The i  equation in equation (1) is removed by 
ija  and then transferred to obtain the equivalent system of 

equations. 

1,

1
( ), 1, 2,

n

i i ij j

j j iii

x b a x i n
a  

   .                         (2) 

Record briefly 0x B x f  and 
1 1 1

0 ( ),B I D A D L U f D b       . By applying the iterative method to 

equation set (2), the Jacobi iterative formula of solution (1) is obtained as follows: 

0 0 0

1

1

1,

( , )

1
( )

T

n

n
k k

i i ij j

j j iii

x x x

x b a x
a



 

 



 



                               (3) 

where, 
0 0 0

1( , )T

nx x x  is the initial vector and 1( , )k k k T

nx x x  is the vector of the k  iteration. If kx  has 

been calculated, the next iteration vector 
1 1 1

1( , ) 0,1, 2, ; 1, 2,k k k T

nx x x k i n      can be calculated from 

equation (3). The matrix form of iteration formula (3) is as follows, and 0B  is the Jacobi iteration matrix. 

0

1 1

0

 ,  

k k

i

starting variablex

x B x f 




 
                                  (4) 

The advantage of Jacobi iterative method is that the formula is simple, each iteration only needs to calculate a 

matrix and vector product. In the use of computer implementation, need to be stored in the two groups work unit

kx  and 1kx  . 

B. Overrelaxed Iterative Method (SOR Method) 

Consider system (1), and the decomposition of A  is as above. Let's say we have the k  iteration vector and 

the component 1 ( 1, 2 1)k

jx j i    of the 1k   iteration vector 1kx  , and we want to compute the component 

1k

ix 
. First we define the auxiliary quantity. 

1
1 1

1 1

1
( ),  0,1, 2 ; 1, 2, , .

i n
k k k

i i ij j ij j

j j iii

x b a x a x k i n
a


 

  

                           (5) 

Then take 
1k

ix 
 as the weighted average of 

k

ix  and 
1 ,k

ix 
 that is 

1 1 1(1 ) ( )k k k k k k

i i i i i ix x x x x x                               (6) 

Substituting (5) into (6), the successive overrelaxation iteration formula for solving the system of equations 

Ax b  can be obtained as follows: 

1
1 1

1 1

1 2

( )

( , ) ( 0,1, 2 ; 1, 2, )

i n
k k k k

i i i ij j ij j

j j iii

k k k k T

i n

x x b a x a x
a

x x x x k i n

 
 

  


   




  

 
                    (7) 

where   is called the relaxation factor. The above equation can also be written as follows: 



International Journal of Innovation in Science and Mathematics 

Volume 11, Issue 2, ISSN (Online): 2347–9051  

Copyright © 2023 IJISM, All right reserved 

37 

1

1
1

1 1

( 0,1, 2 ; 1, 2, )

( )

k k

i i i

i n
k k

i i ij j ij j

j j iii

x x x k i n

x b a x a x
a








  

     


   


 
 

In the following, we give the matrix form of SOR method. Iteration formula (7) can also be written as

1
1 1

1 1

(1 ) ( ) ( 1, 2, ).
i n

k k k k

ii i ii i i ij j ij j

j j i

a x a x b a x a x i n 


 

  

        From the decomposition of equation ,A D L U    

We get
1 1( ) (1 ) ,k k k kDx b Lx Ux Dx        that is

1( ) ((1 ) )k kD L x D U x b         Obviously, for 

any value of , D L  is not singular, so we have 
1 1 1( ) ((1 ) ) ( ) .k kx D L D U x D L b             That is, the 

SOR iteration formula for solving equation (1) is 
1 ,k kx L x f

    where 
1 1( ) ((1 ) ), ( )L D L D U f D L b             

which is called the SOR method's iteration matrix. 

In SOR iteration method, every iteration, the main computation is to compute a matrix and vector 

multiplication. When 1,   (7) is called low relaxation method, and when 1,   (7) is called super relaxation 

method. Choosing the appropriate relaxation factor is a way to achieve the acceleration of SOR method, but the 

selection of the best relaxation factor is generally obtained by numerical practice. The appearance of parallel 

computer makes people start to seek the method of accelerating the iteration from another Angle 
[5, 6]

.
 
Jacobi 

iteration has very obvious intrinsic parallel characteristics because its components are independent of each other. 

The calculation of each component in SOR method is related one by one, and its intrinsic parallelism is far 

worse than Jacobi iteration. However, since SOR method is mostly used for solving large sparse matrix 

equations, it is worth considering to find a parallel implementation of SOR by using the special distribution of 

zero or non-zero elements of coefficient matrix. 

III. FULL PARALLELISM SCHEME 

Assuming that the coefficient matrix is dense, then similar to the Jacobi method, the operations involved in 

SOR iteration can be organized as parallel computation procedures with full degree of parallelism. Here, full 

parallelism means that the degree of parallelism is equal to the order of the system of equations to be solved 
[2]

. 

The SOR iteration for solving the linear system 1( [ ] , [ , ..., ] )T

ij n n nAX g A a g g g    of order n is  

1
( 1) ( 1) ( )

1 1

( 1) ( ) ( 1) ( )

ˆ

ˆ( )

0,1, ...; 1, 2, ...

i n
k k k i

i ij j ij j
iij j i

k k k k

i i i i

g
x a x a x

a

x x x x

k i




 

  

 


    




  

 

 
                      (8) 

Its matrix is represented as 
( 1) ( )( ) [(1 ) ] ,k kD L x D U x g         and , ,A D L U L U    is a strictly 

lower and upper triangular matrix. It is usually considered to solve the above triangular equations in parallel, 

and the basic idea is to combine two successive iteration steps of SOR.   

Let 
1 1 1( ), , ,U D U I L D L f D g         where I  is the identity matrix, then (1) can be rewritten as a 

rectangular form: 
( 1) ( ) ( ) ( 1) ,k k k kX X UX LX f      so 

( 2) ( 1) ( 1) ( 2)k k k kX X UX LX f        in k+1, k+2 

two successive iterations, there are two lower and upper triangular matrix vector products 
( 1)kLX 

 and ( 1)kUX  , 



International Journal of Innovation in Science and Mathematics 

Volume 11, Issue 2, ISSN (Online): 2347–9051  

Copyright © 2023 IJISM, All right reserved 

38 

they can combine n n-dimensional vector number multiplication operation 
( 1)k

i ix B
 (i = 1,... ,n), in which,

B L U   where 
iB  are the i column of .B  

So let's say that we have, 

( )( ) kY I U X                                           (9) 

Design the following cyclic iterative process: Add 1n  vector 
( 1) ( 1) ( )

1 1 2 2, , , ...,k k n

n nf x B x B x B 
 to Y  one by 

one, and this process gradually produces 
( 1)k

i iy x   (i = 1, 2... ,n) and 
( 1)( ) ,kY I U x    and the latter just 

prepares the initial value for the next cycle. The complete formula of (9) is 

(0, 1) (0)

( ,1) ( 1, 1)

( , ) ( , 1) ( , 1)

1 1

( )

2, 3, ..., , 1, 1, 2, ...

n

k k n

k i k i k i

i i

Y I U X

Y Y f

Y Y Y B

i n n k



 

 

 

  


 


 

  

                              (10) 

Iteration (10) is all composed of multiplication and addition of n -dimensional vectors, and obviously its 

parallelism degree is always n . We call (10) the full parallelism iteration of SOR, denoted as PPSOR (Parallel 

Point SOR). Before starting (10), the formation of matrix B  and vector f  can also be formed by n -

dimensional vector operations: 

 11 22, , ..., ,

, 1, 2, ...,

T

nn

i i

Y a a a

B Y A i n

f Y g

      


  
   


                       (11) 

where iA  is the i column of coefficient matrix ,A  and the operation * is the product of the corresponding 

components. According to (10) and (11), the parallelism degree of the proposed parallelization scheme is 

identical to the order n  of the system of equations, except that the initial value 
)1,0( nY  is calculated by the 

product operation of triangular matrix and vector. If implemented on vector computer, it can make full use of 

the special “link” function of vector operation. If  BfH ,  is set on 
( 1)n nR  

 and iH  is the i column 

( )

0( 0,1, 2, ..., ), 1( 0,1, 2, ...),li n y l    the initial value (0) (0)( ) ,Y I U X   then PPSOR (10) can be expressed in 

a more concise form mathematically: 
( 1) ( ) ( )

mod( 1) mod( 1) , 0,1,...l l l

l n l nY Y y H l

    .Step k  of PPSOR (10) 

produces step k  iteration 
( )kX  of (8), that is, 

( , ) ( ) , 1, 2, ..., , 1, 2, ...k i k

i iy x i n k   , which means diagonal 

elements of a matrix ( ,1) ( ,2) ( , ), , ...,k k k nY Y Y    of order n  form the n  components of ( ) .kX  

Since step k  of PPSOR produces step k  iteration 
( )kX  of (8), the parallelization design does not reduce the 

convergence speed of SOR. However, compared with SOR (8), the parallel scheme introduces redundant 

operation on the total amount of four operations, which can obtain the operation amount 1 02 ( 1)T k n n   of (1), 

the operation amount 
2

2 0 02 ( 1)T n k k n    of PPSOR (3), and the redundant operation amount 

0

2 1 (2 ) .
k

T T n
n

    If there are p  processors (let's assume that p  can divide n ), the theoretical speedup ratio 



International Journal of Innovation in Science and Mathematics 

Volume 11, Issue 2, ISSN (Online): 2347–9051  

Copyright © 2023 IJISM, All right reserved 

39 

S  and efficiency E  are respectively 1

2

, ,
( / )( / )

T S
S p E

n p T n p
      in which 

01

0

2 0

0

1
1

( ),
1 1 1

1
2

kT n k
T k

k n

 


   


 

0( )k  is strictly increasing with respect to 
0 ,k  so the parallel speedup of PPSOR is quite satisfactory, and the 

larger the number of iteration steps 
0 ,k  the more obvious the speedup and the higher the efficiency

[7]
. 

As can be seen from 1 2 1

2 2

1 ,
T T T

T T



  

 the reason why the speedup ratio is less than the number of 

processors p  is that the parallelization design introduces redundant computation amount 
2 1T T . Theoretically, 

the redundant computation amount 0

2 1 (2 )
k

T T n
n

    can be negative, that is, the number of iteration steps 
0k  

can be greater than twice the order n  of the system of equations, in which case the speedup ratio can be greater 

than .p  From the above analysis, it can be seen that PPSOR still has good parallelization computing efficiency 

even for small 0 .k  

IV. CONCLUSION 

In this paper, two iterative algorithms for solving large linear equations are introduced and their shortcomings 

are analyzed. In view of SOR iterative methods, which are usually considered to be unfavorable to parallel 

computing, the PPSOR iterative formula is given and proved to have the performance of full parallelism, and the 

expression of the formula is concise and clear. Thus, a parallel implementation of SOR is obtained to some 

extent. 

ACKNOWLEDGMENT 

This research was supported by the Shandong Provincial Natural Science Foundation, China (ZR2020MF0 

35). 

REFERENCES 

[1] Li Qingyang, Wang Nengchao, Yi Dayi. Numerical analysis. Wuhan: Huazhong University of science and technology press, 2012.  

[2] Li Xiaomei, Jiang Zengrong. Parallel Algorithm. Changsha: Hunan Science and Technology Press, 1992. 

[3] Wen Ruiping, Duan Hui. A class of preconditioned parallel multi-splitting SOR iterative methods for h-matrix system of linear 
equations [J]. Applied Mathematics, 2020, 33(04): 814-825. 

[4] WU Ruihuan. A New pretreatment method of SOR [J]. Journal of Taiyuan Teachers College (Natural Science Edition), 2019, 18(02): 

9-11+15. 
[5] Grama, Ananth, Anshul Gupta and George Karypis. Introduction to parallel computing. 2d ed. Harlow, England: Addison-Wesley, 

2013. 

[6] James.M.Ortega. Introduction to parallel and vector solution of linear systems. New York: Plenum Press, 1988. 
[7] Michael J. Quinn. Programming in C with MPI and Open MP. 2014. 

AUTHOR’S PROFILE 

 

First Author 

ZHU Xiaorong, (1979-), Female, Master, Associate Professor, Taishan University, Research Interest: Mathematics 

Education. (Tai 'an 271000, Shandong, China). 

  

 

Second Author 

Yumei Huang, is a lecturer at Taishan University. She obtained her master's degree from Shandong University of 
Science and Technology in July, 2008. Her research interests are in the areas of applied mathematics and mathematics 

education in recent years. 

 


