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Abstract – The paper considers an alternative economic hypothesis in relation to the one used in the optimal 

production planning model. Relevantthe conditions have a transparent economic meaning: the estimate of the total 

cost of resources for the production of a unit of a product should not exceed the price of this product. The results 

obtained are identical to known theorems of duality theory. The proofs given are of an elementary nature, only the 

simplest properties of the inequalities are used. Ways to increase the optimal amount of profit are considered. 

Specific standards for resource costs are indicated, with a decrease in which the optimal amount of profit can 

increase. 
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I. INTRODUCTION 

Application of mathematical methods to optimize production planningfirst studied by George B. Dantzig and 

L.W. Kantorowitsch [1-2]. Further development is given in [3-4]. Using a certain economic hypothesis, a dual 

problem was formulated and the main results of the theory of duality were obtained. At the same time, it is of 

interest to study the problem using an alternative economic hypothesis, which is the subject of this 

work.Consider the problem of production planning (see, for example, [5]): 

∑        
 
                                                 (1) 

∑               
 
   i                                  (2) 

    j= 1,…, n                              (3) 

According to a well-known economic interpretation, the goal is to maximize the profit of a certain production 

at given prices, volumes of resources and norms for the costs of the latter for the production of a unit of 

production of each type. Here 

   – stock of the i-th resource, i = 1, …, m; 

    - the need for the i-th resource for the production of a unit of the j-th product, 

i = 1, …, m; j=1, …, n; 

   is the planned volume of production of the j-th product, j = 1, …, n; 

   - unit price of the j-th product, j = 1, …, n. 

It is also assumed.  

                                                  (4) 

Let us assume that all supporting designs of the problem are non-degenerate. 

We will call problem (1) - (3) the direct problem. An additional task can be attached to it, for which a certain 
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economic hypothesis is used. 

The commonly used hypothesis assumes that each resource is associated with its assessment, and for each 

product, the total assessment of the resources used in its manufacture should not be lower than the cost of the 

finished product: 

∑        
     j                     (5) 

Here   is the estimate of the unit of the i-th resource. This estimate is not bounded from above and can take 

arbitrarily large values. In order to level this, a total estimate of resources to be minimized is introduced. The 

corresponding problem is called dual and has the form 

∑   
   
      = min                  (6) 

∑      
   
         j = 1, …, n              (7) 

      i = 1, …,m              (8) 

Certain results have been obtained for a dual pair of problems [3-4]. 

Instead of the dual problem, consider the following problem: 

∑   
   
      = max                (9) 

∑      
   
         j = 1, …, n            (10) 

       i = 1, …, m           (11) 

We will call this task a companion one. A pair of problems (1-3) and (9-11) will be called a companion pair. 

Conditions (10) have a transparent economic meaning: the estimate of the total cost of resources for the 

production of a unit of product j should not exceed the price of this product. Consider jointly optimal solutions 

to problems (1-3) and (9-11). 

Let us denote the optimal value of the objective function of problem (1)     : 

∑     
   
                       (12) 

Next, we denote the optimal  value of the objective function of problem (9)     : 

∑     
   
    =                  (13) 

Multiply the i-th inequality of problem (2) by    and add up all m inequalities. Get 

∑   
   
   ∑    

   
     ≤∑   

   
      =                (14) 

∑  ∑      
   
   

   
   )  ≤                 (15) 

Subtract (12) from (15): 

∑   
   
   ∑       

   
        ≤                    (16) 

It follows from (3) and (10) that the left side of inequality (16) is nonpositive. The maximum value of the left 

side is zero. We have: 
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          ≥ 0              (17) 

                       (18) 

Now let's multiply the j-th inequality of problem (10) by    and add up all n inequalities: 

∑    ∑      
   
   

   
   ) ≤ ∑     

   
    =                  (19) 

∑  ∑      
   
   

   
   )   ≤                  (20) 

Subtract (13) from (20):       

∑     
   ∑      

   
   -   )   ≤      -                  (21) 

It follows from (2) and (11) that the left side of inequality (21) is nonpositive. Its maximum value is zero. We 

have: 

          ≥ 0,                 (22) 

                  (23) From (18) and (23) 

It follows that the optimal values of the objective functions of the problems coincide: 

    =              (24) From (16) and (24) 

It follows: 

∑   
   
   ∑       

   
        ≤ 0                                       (25) 

It follows from (3) and (10) that the left side of inequality (25) is nonpositive. Itsmaximumvalueiszero. 

Wherein 

∑   
   
   ∑       

   
        = 0            (26) 

All terms in (26) are nonpositive, i.e. each of them is zero: 

 ∑       
   
         = 0  j = 1, …, n          (27) 

It follows from here that if   >  0, i.e. product j is included in the optimal production plan, then  

∑      
   
   -   = 0,  j = 1, …, n          (28) 

   = ∑      
   
   .   J = 1, …, n          (29) 

Thus, the total assessment of the resources used for its production is equal to its cost.      >∑      
   
   , then    

= 0,  i.e. product j is not included in the optimal production plan. The total estimate of the resources used for its 

production turns out to be less than its cost. Further, from (24) and (21) it follows: 

∑     
   ∑      

   
   -   )   ≤ 0            (30) 

It follows from (2) and (11) that the left side of inequality (30) is nonpositive. Its maximum value is zero. 

Wherein. 

∑     
   ∑      

   
   -   )     0            (31) 
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All terms in (31) are nonpositive, and therefore equal to zero: 

(∑      
   
      )   = 0, i = 1, …, m            (32) 

Let    0. Then  

   = ∑      
   
                 (33) 

Thus, the i-th resource is completely used (scarce). An increase in a scarce resource can contribute to an 

increase in profits. If 

∑      
   
   <  ,              (34) 

then    = 0. Thus, the estimate of an underutilized (non-scarce) resource is equal to zero. 

The results obtained are identical to known theorems of duality theory. 

From the above, as well as the duality theorem on the coincidence of the optimal values of the objective 

functions of the primal and dual problems, it follows that the optimal values of the objective functions of the 

primal, concomitant, and dual problems coincide. Thus, using the dual or companion pair of problems is 

equivalent. The proofs given are of an elementary nature, only the simplest properties of the inequalities are 

used. 

Let's consider some ways to increase the optimal amount of profit.Consider a related pair of problems. In the 

optimal solution of the direct problem, scarce resources are determined, the increase of which can lead to an 

increase in the optimal profit value. An increase in the optimal value of profit can also be facilitated by a 

decrease in certain standards of resource costs. Let     be one of the scarce resources, i.e. 

∑       
   
    =                               (35) 

For any     , when the cost standard      decreases, the resource     ceases to be scarce. This can lead to an 

increase in the optimal profit margin. In this case, it is possible to use various strategies to reduce cost standards. 

For some products, the prices in the optimal solution of the accompanying problem coincide with the total 

cost estimate of the resources used to manufacture these products. We call such prices marginal. Let     be one 

of the prices for which 

∑       
   
    =                  (36) 

For any     0, as the cost norms      decrease, the price     ceases to be a boundary value. This can help 

increase the optimal profit margin. 

In both cases, it is necessary to re-solve the problems of the accompanying pair. 

In the light of the foregoing, the case        may be of some interest, when the marginal price and the scarce 

resource simultaneously cease to be such. Let's call such elements key. They are located at the intersection of 

the columns of the original matrix, corresponding to the products included in the optimal production plan, and 

the rows corresponding to scarce resources. Let's call this submatrix the key submatrix. Reducing any element 

of this submatrix can increase the optimal profit. This information may be of some interest to designers, 
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economists and other specialists. The growth of optimal profit can be facilitated by an increase in scarce 

equipment and marginal prices. 

We will also be interested in other possibilities for increasing the optimal profit. Consider the direct problem 

(1-3). Consider hyperplanes: 

∑    
 
      =    i = 1, …, m            (37) 

We bring them to the following form:  

∑
  

(     ⁄ )

 
    = 1                             0; i = 1,…,m;          (38) 

The values 
  

   
 (j = 1,…,n ; i=1,…,m) are segments cut off on the coordinate axes by hyperplanes (37). Denote 

   =       
     

   
,     j = 1,…,n.          (39) 

Geometrically,    is the lowest of the points of intersection of the coordinate axis    with hyperplanes (37). 

Let‘s call points    (   , 0,…,0),    (0,    ,0,…,0), …,    (0,…,    ) as axial boundary points. They are the 

vertices of the polyhedron of conditions (2)-(3), i.e. basic plans of the direct problem. They also belong to the 

hyperplane: 

∑
  

  

   
     .                   (40) 

The vertices of the solution polyhedron belonging to the coordinate axes form a subset of the axial boundary 

points. There are inequalities. 

0      , j                     (41) 

Consider the optimal solution to problem (1), (2), (41) under the assumption that it is nondegenerate and 

unique. 

Consider the case where the variable    in this solution takes on an upper bound value: 

   =                               (42) 

   =       
     

   
 = 

 
  

    

.             (43) 

With an increase in   , in principle, the objective function can also increase. An increase in    can occur in 

the following cases: 

1. The stock of the resource     will increase; 

2. The standard      of resource consumption   per unit of product J will decrease; 

3. The ratio 
 
  

    

 will increase. 

Case 1 follows from the theory of duality, because the growth of the value of the total estimate of resources is 

associated with an increase in profit. Cases 2-3 provide further opportunities to increase profits. To check 

possibilities 1-3, it is necessary to resolve the original problem. Consider the accompanying problem. 
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∑     
   
    = max              (44) 

∑      
   
    ≤    J=1, …, n            (45) 

   ≥ 0,               (46) 

Here    is the estimate of resource unit i.Consider hyperplanes: 

∑      
   
    =   , j=1, ..., n            (47) 

We bring them to the following form: 

∑
  

         

   
    = 1,     ≠ 0.             (48) 

The values 
  

   
   are segments cut off on the coordinate axes by hyperplanes (47). Denote 

   =       
     

   
 , i=1, …, m            (49) 

Geometrically,    the lowest point of intersection of the coordinate axis    with hyperplanes (47). Points 

                                               are called axial boundary points. They are vertices of the 

polyhedral set defined by conditions (45)-(46) and belong to the hyperplane. 

∑
  

  

   
    = 1.              (50) 

There are inequalities, 

     ≤     i = 1, …, m           (51) 

Consider the optimal solution to problem (44), (45), (51) under the assumption that it is nondegenerate and 

unique. 

Let one of the variables in the optimal solution of the problem take its upper boundary value. 

   =   ,    i = 1, …, m                                       (52) 

We have, 

   =       
     

   
 = 

 
  

    
.             (53) 

In principle, one can expect that with an increase in the upper bound    the value of the objective function 

(44) may also increase. In this case, the value of the objective function of the original problem will increase 

accordingly. An increase can occur in the following cases: 

1. The price of the product     will increase; 

2. The standard       of the consumption of resource i per unit of product    will decrease; 

3. The ratio 
 
  

    
 will increase. 

In case 1, an increase in the price of a product can lead to a corresponding increase in profits in the optimal 

solution. Cases 2-3 provide further opportunities to increase profits. To check possibilities 1-3, it is necessary to 
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re-solve the original problem. A similar analysis for a dual pair of problems was carried out in the author's paper 

[6]. 

In the optimal solution of the problems of the dual pair, among other things, scarce resources are determined, 

the increase of which can lead to an increase in the optimal value of profit. The above applies to the 

accompanying pair of problems. At the same time, the prices of products are also determined, the increase of 

which can lead to an increase in the optimal profit value. Next, consider the following pair of problems. 

∑        
 
                                                (54) 

∑               
 
   i                              (55) 

    j = 1, …, n               (56) 

and 

∑   
   
      = min              (57) 

∑      
   
   ≥     j = 1, …, n            (58) 

      i = 1, …, m            (59) 

Here, thevalue  canbeinterpretedastheunitcostofproductj. Considerjointlyoptimalsolutionsofproblems (54-56) 

and (57-59). 

Let us denote the optimal value of the objective function of problem (54)    : 

∑     
   
                      (60) 

Next, we denote the optimal value of the objective function of problem (57)     : 

∑     
   
   =                                (61) 

Multiply the i-th inequality of problem (55) by     and add up all m inequalities. Get 

∑   
   
   ∑    

   
     ≥∑   

   
     =                             (62) 

∑  ∑      
   
   

   
   )  ≥                               (63) 

Subtract (60) from (63): 

∑   
   
   ∑       

   
        ≥                    (64) 

It follows from (37) and (39) that the left side of inequality (64) is non-negative. Its minimum value is zero. 

Wherein  

          ≤ 0              (65) 

                       (66) 

Now let's multiply the j-th inequality of problem (58) by     and add up all n inequalities: 

∑    ∑      
   
   

   
   ) ≥∑     

   
   =                             (67) 
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∑  ∑      
   
   

   
   )  ≥                 (68) 

Subtract (61) from (68): 

∑     
   ∑      

   
   -   )   ≥    -                  (69) 

It follows from (55) and (59) that the left side of inequality (69) is non-negative. Its minimum value is zero. 

Wherein.  

          ≤0,      ≥                             (70) 

From (66) and (70) it follows that the optimal values of the objective functions of the problems coincide: 

    =                   (71) 

From (64) and (71) it follows: 

∑  
   
   ∑      

   
       )   ≥ 0          (72) 

All terms in (72) are non-negative. The minimum value of the sum is zero, which is achieved when each term 

is equal to zero:  

(∑          
   
   )    = 0,.          j = 1, …, n          (73) 

This implies that if   >  0, i.e. product j is included in the optimal production plan, then 

∑      
   
   -    ,             (74) 

   = ∑      
   
   .                 (75) 

Thus, the total assessment of the resources used for its production is equal to its cost. If 

   ∑      
   
   ,               (76) 

then    = 0, i.e. product j is not included in the optimal production plan. The total estimate of the resources used 

to produce it turns out to be greater than its value. 

Further, from (69) and (71) it follows: 

∑     
   ∑      

   
   -   )    ≥ 0            (77) 

All terms in (77) are non-negative. The minimum value of the sum is equal to zero, which is achieved when 

each term is equal to zero. Wherein 

(∑      
   
      )   = 0, i=1, …, m           (78) 

Let   > 0. Then  

   = ∑      
   
                 (79) 

Thus, the i-th resource is used at the level of the lower bound, i.e. limited. Reducing the limit can help reduce 

the optimal value of the objective function. If 

∑      
   
   -  > 0,              (80) 
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Those. The total cost of the resource is above the limit level, then     . Thus, the assessment of such a 

resource is equal to zero. 

II. CONLUSION 

The results obtained are similar to the well-known theorems of duality theory.In this paper, we consider the 

dual and associated pairs of problems and show their equivalence. We note that the results are obtained within 

the framework of a uniform procedure, including: changing the order of summation; use of the simplest 

properties of inequalities, etc. 

The proposed alternative model gives a symmetrical view of changing the parameters of the problem in order 

to increase the profit of the enterprise. This information may be of some interest to designers, economists and 

other specialists of the enterprise. A similar study was also carried out for the problem of minimizing the total 

cost of the production program. 
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