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Abstract – This study is on Parametric versus Non-

Parametric Simple Linear Regression on Data With and 
without Outliers. Data used for this study were collected 
from the department of Mass Communication, Imo State 
University Owerri Imo State Nigeria. Twenty five (25) 
students were selected at random to determine the 
Cumulative Grade Point Average (CGPA) at the end of 
2014/2015 Academic session (Y) and their respective Joint 
Admission Matriculation Board (JAMB) score (X). The use 
of a programming language software known as “R 
Development” was used in this study. The set of data was 
subjected to normality test, and it was concluded that all 
residuals in the y-direction are not normally distributed via 
the Anderson-Darling technique. The procedures for the 
parametric Theil’s and that of its non-parametric OLS 
regression were highlighted. The data were analyzed for both 
parametric and non-parametric techniques; thereafter 
outliers were detected and expunged from the data. The data 
after removing outliers were re-analyzed. From the analysis, 
the result revealed that there is a significant relationship 
between students CGPA and their JAMB scores for both the 
parametric OLS regression and non-parametric Theil’s 
regression with and without outliers. 

It was concluded that the parametric OLS is better than its 
non-parametric Theil’s regression for both data with and 
without outliers since their standard error, AIC and BIC are 
lower than that of Theil’s regression. It was also concluded 
that the standard error for the parametric regression with 
outliers which is 0.3405 reduced to 0.1962 for the parametric 
regression without outliers. On the other hand, the standard 
error for the non-parametric regression with outliers which 
is 0.3609 reduced to 0.2087 for the non-parametric regression 
without outliers. This implies that the model for the data 
without outliers is more efficient than the model for the data 
with outliers for both the parametric and non-parametric 
regression. Therefore the researchers recommend that future 
researchers should look into a similar work with large 
sample size to examine the differences between the 
parametric and nonparametric Regression. 
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I.  I NTRODUCTION  
 
The simple linear regression model is the ordinary or 

traditional equation representing the relationship between 

two variables; the response and the explanatory variables. 
Sometimes the residuals in a regression analysis may 
deviate far from the others. In this case, an outlier occurs. 
It is obvious that no observation can be guaranteed to be a 
totally dependable manifestation of the phenomena under 
study. Therefore, the probable reliability of an observation 
is reflected by its relationship to other observations that 
were obtained under similar conditions. Observations that 
in the opinion of the investigator stand apart from the bulk 
of the data have been called “outliers”, “extreme 
observations” “discordant observations”, “rouge values”, 
“contaminants”, “surprising values”, “mavericks” or “dirty 
data” by Ranjit [11]. An outlier is one that appears to 
deviate markedly from the other members of the sample in 
which it occurs. An outlier is a data point that is located 
far from the rest of the data.  

Again, the presence of outliers may contribute to non-
normal distribution. Consider a situation where the 
distribution of the errors is not normal. If the errors are 
coming from a population that has a mean of zero, then the 
OLS estimates may not be optimal, but they at least have 
the property of being unbiased. If we further assume that 
the variance of the error population is finite, then the OLS 
estimates have the property of being consistent and 
asymptotically normal. However, under these conditions, 
the OLS estimates and tests may lose much of their 
efficiency and they can result in poor performance by 
Mutan [8]. To deal with these situations, two approaches 
can be applied. One is to try to correct non-normality, if 
non-normality is determined and the other is to use 
alternative regression methods, which do not depend on 
the assumption of the normality according to Birkes and 
Dodge [2].  

In a simple linear model, Theil [15] proposed the 
median of pairwise slopes as an estimator of the slope 
parameter. Sen [13] extended this estimator to handle ties. 
The Theil-Sen Estimator (TSE) is robust with a high 
breakdown point 29.3%, has a bounded influence function, 
and possesses a high asymptotic efficiency. Thus it is very 
competitive to other slope estimators (e.g., the least 
squares estimators), see Sen [13], Dietz [3] and Wilcox 
[16].  

The proposed estimators contain an integer variable 
which controls the amount of robustness and efficiency. 
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The maximal possible robustness (in terms of break-down 
point) is attained when the integer variable is chosen to be 
the number of the parameters to be estimated; while the 
maximal efficiency is achieved when the variable assumes 
the sample size; any value of the variable taking in 
between results in an estimator which gives a compromise 
between robustness and efficiency. 

In straight-line regression, the least squares estimator of 
the slope is sensitive to outliers and the associated 
confidence interval is affected by non-normality of the 
dependent variable. A simple and robust alternative to 
least squares regression is Theil regression, first proposed 
by Theil (1950). Theil’s method actually yields an 
estimate of the slope of the regression line. Several 
approaches exist for obtaining a nonparametric estimate of 
the intercept. In this paper, we shall use the R for 
estimating the parameters. This paper shall be of 
paramount significant to future researchers who may wish 
to carry out a similar research, knowing when and how to 
use the parametric and non-parametric methods.  

 
II. R ELATED L ITERATURE REVIEW  

 
There is need to review works done by past researchers 

in order to have a proper guide. Here are some recent 
works done by past researchers. 

Opara [10] conducted a research on the comparison of 
parametric and non-parametric linear regression. First, the 
set of data was subjected to normality test, and it was 
concluded that all errors in the y-direction are normally 
distributed (i.e. they follow a Gaussian distribution) for the 
commonly used least squares regression method for fitting 
an equation into a set of (x,y)-data points using the 
Anderson-Darling technique. The algorithms for Theil’s 
were stated in their work as well as its non-parametric 
counterpart. Data used for the study were collected from a 
trader in Dauglas Owerri Market in Imo State Nigeria who 
sales pears. The numbers of rotten pears (y) in 20 
randomly selected boxes from a large consignment were 
counted after they have kept in storage for a studied 
number of days (x). The use of a programming language 
software known as “R Development” and Minitab were 
used in the study. From their analysis, the result revealed 
that there exists a significant relationship between the 
numbers of rotten pears and the number of days for both 
the ordinary least squares and the Theil’s regression. It 
was concluded that the parametric OLS is better than its 
non-parametric Theil’s regression since their AIC and BIC 
are both lower than that of Theil’s regression. It was 
recommended that future researchers should embark on a 
similar research study using large sample size, and using 
non-normal data to examine the differences between the 
OLS and Theil’s Regression. 

Ohlson and Kim [9] conducted a work on Linear 
Valuation without OLS: The Theil-Sen Estimation 
Approach. According to them, OLS confronts two well-
known problems in many archival accounting research 
settings. First, the presence of outliers tends to influence 
estimates excessively. Second, in the cross-sections, 
models often build in heteroscedasticity which suggests 

the need for scaling of all variables. Their study compared 
the relative efficacy of Theil [15] and Sen [13] (TS) 
estimation approach vs. OLS estimation in cross-sectional 
valuation settings. Next-year earnings or, alternatively, 
current market value determines the dependent variable. 
To assess the two methods’ estimation performance the 
analysis relied on two criteria. The first focused on the 
inter-temporal stability of coefficient estimates. The 
second focused on the methods’ goodness-of-fit, that is, 
the extent to which a particular model’s projected values 
come close to actual values. On both criteria, results 
showed that TS performed much better than OLS. The 
dominance was most apparent when OLS estimates have 
the “wrong” sign. TS estimations, by contrast, never lead 
to such outcomes. Conclusions remained intact even when 
variables have been scaled for size. 

Erilli and Alakus [5] conducted a study on non-
parametric regression estimation for data with equal 
values. The study proposed a new method for the 
estimation of nonparametric regression parameters with 
sample data. The method proposed and other 
nonparametric methods such as Theil, Mood-Brown, 
Hodges-Lehmann methods and OLS method were 
compared with the sample data. In the data set which the 
independent variable had outliers, the OLS estimators 
gave incorrect values as expected. The proposed method 
produced more successful results like other nonparametric 
regression methods. In addition, the proposed methods’ 
results were close to OLS results in the data set which 
were close to normal distribution and in the data set which 
the dependent variable had outliers. It showed that the 
proposed method can be among the alternative 
nonparametric regression family. They researchers 
concluded that since the analysis were made without 
searching if the data had the linear regression assumptions 
for the OLS method or not, the analysis results were in 
favor of OLS. 

Ekezie and Opara [4] researched on Estimation of 
Bivariate Regression Data via Theil’s algorithm. The 
method was adopted since all errors in the y-direction are 
not normally distributed (i.e. the do not follow a Gaussian 
distribution) for the commonly used least squares 
regression method for fitting an equation into a set of 
(x,y)-data points using the Kolmogorov Smirnov test. The 
algorithms for Theils were stated in the study. The data 
used for their research were collected from selected 
primary schools in Owerri Municipal, Imo State Nigeria. 
The data were on weights and shoulder heights of 100 
randomly selected pupils in primary four, five and six. The 
use of a programming language software known as “R 
Development” was used to write an appropriate expression 
in the study. From the analysis, the result revealed that 
there exist a significant relationship between weights and 
shoulder heights of primary school pupils, and the 
estimated fitted Theil’s is 

ii xy   0.1177 42.5833ˆ += and it 

was observed that both the intercept and slope were 
significant.  

In a research study carried out by Fernandes and 
Leblanc [6] on Parametric (modified least squares) and 
non-parametric (Theil–Sen) linear regressions for 
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predicting biophysical parameters in the presence of 
measurement errors, Parametric (Modified Least Squares) 
and non-parametric (Theil-Sen) consistent predictors were 
given for linear regression in the presence of measurement 
errors together with analytical approximations of their 
prediction confidence intervals. Three case studies 
involving estimation of leaf area index from nadir 
reflectance estimates were used to compare these unbiased 
estimators with OLS linear regression. A comparison to 
Geometric Mean regression, a standardized version of 
Reduced Major Axis regression, was also performed. The 
Theil–Sen approach was suggested as a potential 
replacement of OLS for linear regression in remote 
sensing applications. It offered simplicity in computation, 
analytical estimates of confidence intervals, robustness to 
outliers, testable assumptions regarding residuals and 
requires limited a priori information regarding 
measurement errors. 

Having reviewed some of these past researches, we shall 
embark on Parametric Versus Non-Parametric Simple 
Linear Regression on Data With and without Outliers 
using real life data of CGPA and JAMB scores. 

Regression analysis is a statistical technique that express 
mathematically the relationship between two or more 
quantitative variables such that one variable (the 
dependent variable) can be predicted from the other or 
others (independent variables). Regression analysis is very 
useful in predicting or forecasting by Inyama and 
Iheagwam [7]. It can also be used to examine the effects 
that some variables exert on others. However, regression 
analysis may be simple linear, multiple linear or non 
linear. In this study, simple linear regression is applicable. 

 
III. S IMPLE L INEAR REGRESSION 

 
This is a regression line that involves only two variables 

as it is applicable in this research study. A widely used 
procedure for obtaining the regression line of y on x is the 
Least Squares Method. 

The linear regression line or y on x is  
 y = α + βx + e   … (1) 
where y is the response or dependent variable, x is the 
predictor or independent variable. α is the intercept, β is 
the slope, while e is the error term. 

Using the least squares method, the parameters are 
estimated as shown in equations (2) and (3); 

 
2

i
2
i

iiii

)x(xn

yxyxnˆ
Σ−Σ
Σ−Σ=β  … (2) 

 xˆyˆ βα −=   … (3) 

The calculation is usually set out in Analysis of 
Variance (ANOVA) table as shown in Table 1 

Table 1: Regression Table 

Variance 
Degree of 
freedom 

Sum of square Mean square 

Regression 1 RSS = β∑xy 
1

RSS
RMS=  

Error n – 2 ESS = TSS – RSS 
2n

ESS
EMS

−
=  

Total n – 1 TSS = ∑y2  

The test statistic is given by 

 
EMS

RMS
Fcal =   … (4) 

The Fcal is now compared with the F-value obtained 
from the F-table or F-tabulated with 1 and (n – 2) degree 
of freedom. 

 
IV. T HEIL ’S REGRESSION METHOD  

 
Theil’s regression is a nonparametric method which is used as 

an alternative to robust methods for data sets with outliers. 
Although the nonparametric procedures perform reasonably well 
for almost any possible distribution of errors and they lead to 
robust regression lines, they require a lot of computation. This 
method is suggested by Theil [15], and it is proved to be useful 
when outliers are suspected, but when there are more than few 
variables, the application becomes difficult. 

Sprent [14] states that for a simple linear regression model to 
obtain the slope of a line that fits the data points, the set of all 
slopes of lines joining pairs of data points (xi,yi) and 
( , ),j jx y  xj ≠ xi, for 1 ≤ i < j ≤ n should be calculated by; 

   

ixjx

iyjy

ijb
−

−
=                              … (5) 

Thus b* is the median of all Equation (5) 

Hence, in this study, for n observations, we have 
2

)1( −nn  

algebraic distinct 
jibijb =  

But ∗a  is the median of all 
i

xb
i

yia ∗−=  

The mean square error is given in equation (6) 

kn

2)ŷiy(
n

1iMSE
−

−∑
==  … (6) 

 
V. AKAIKE INFORMATION CRITERION  (AIC) 

 
The Akaike’s information criterion AIC by Akaike [1] is 

a measure of the goodness of fit of an estimated statistical 
model and can also be used for model selection. Thus, the 
AIC is defined as; 

n

RSS
e

n

û
eAIC n

k22
in

k2

== ∑   … (7) 

where k is the number of regressors (including the 
intercept) and n is the number of observations. For 
mathematical convenience, Equation (7) is written as; 








+






=
n

RSS
ln

n

k2
)AICln(   … (8) 

where ln (AIC) = natural log of AIC and 2k/n = penalty 
factor. 
 
VI. BAYESIAN INFORMATION CRITERION  (BIC) 
 

Bayesian Information Criterion BIC by Schwarz [12] is 
a measure of the goodness of fit of an estimated statistical 
model and can also be used for model selection. It is 
defined as 
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n

RSS
n

n

û
nBIC n

k2
in

k

== ∑   … (9) 

Transforming Equation (3) in natural logarithm form, it 
becomes (See Equation (9)); 








+=
n

RSS
ln)nln(

n

k
)BICln(   … (10) 

where )nln(
n

k is the penalty factor. For model comparison, 

the model with the lowest AIC and BIC score is preferred. 
 

VII. D ATA ANALYSIS  
 

Data used for this study were collected from the 
department of Mass Communication, Imo State University 
Owerri Imo State Nigeria. Twenty five (25) students were 
selected at random to determine the Cumulative Grade 
Point Average (CGPA) at the end of 2014/2015 Academic 
session (Y) and their respective Joint Admission 
Matriculation Board (JAMB) score (X). The data for the 
25 selected students are shown in Table 2. 

 
Table 2: CGPA (Y) and JAMB Score (X) of 25 Selected 

Students 
i Y X i Y X i Y X 
1 3.21 215 10 2.45 198 19 3.11 221 
2 2.86 196 11 3.67 234 20 3.17 235 
3 2.58 211 12 3.82 218 21 3.81 253 
4 3.37 228 13 3.78 256 22 4.01 274 
5 3.68 245 14 3.48 248 23 3.89 265 
6 4.25 289 15 3.56 239 24 2.56 233 
7 3.45 238 16 2.89 197 25 3.77 255 
8 3.16 201 17 2.19 204    
9 2.85 241 18 3.28 219    

 
The data set was subjected to normality test using 

Anderson-Darling Technique via R Software package, and 
the output is shown below; 
jude=lm(CGPA~JAMB) 
>summary(jude) 
>resid(jude) 
>amara=resid(jude) 
> ad.test(amara) 

 
Anderson-Darling normality test 

 
data:  amara 
A = 1.0609, p-value = 0.007127 
 

The result showed that the residuals are not from a 
normal distribution. 

Having not rejected the null hypothesis which implies 
the absence of normality, we can say that there is presence 
of outliers in the data set. However, let us analyze the 
data with outliers for the parametric and non-
parametric regression. 
 
 

VIII. O UTPUT FOR PARAMETRIC ORDINARY  
OLS 

 
Residuals: 
    Min       1Q        Median        3Q        Max  
-0.76200 -0.09201  0.07465  0.15799  0.74801  
 
Coefficients: 
Estimate Std. Error t value Pr(>|t|)     
(Intercept) -0.56150 0.65220  -0.861  0.398     
JAMB    0.01667   0.00279   5.975 4.31e-06 *** 
--- 
Signif. codes:   
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 0.3405 on 23 degrees of 
freedom 
Multiple R-squared:  0.6082,    Adjusted R-squared:  
0.5911  
F-statistic:  35.7 on 1 and 23 DF, p-value: 4.309e-06 
> AIC(jude) 
[1] 20.99785 
> BIC(jude) 
[1] 24.65447 
 

IX. OUTPUT FOR NON-PARAMETRIC THEIL ’S 

REGRESSION 
 
> jude = mblm(CGPA~JAMB) 
> summary(jude) 
 
mblm(formula = CGPA ~ JAMB) 
 
Residuals: 
    Min       1Q       Median    3Q            Max  
-0.86761 -0.17162 -0.01390  0.05119  0.61639  
 
Coefficients: 

Estimate      MAD       V value  Pr(>|V|)     
(Intercept) -0.051934  0.481272 126  0.339     
JAMB       0.014934 0.002033  324   1.19e-07 *** 
--- 
Signif. codes:   
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.3609 on 23 degrees of freedom 
 
> AIC(jude) 
[1] 23.89809 
> BIC(jude) 
[1] 27.55472 
 

Having carried out the analysis with outliers, we 
can conclude that from the result that student’s 
CGPA can be predicted at the end of any academic 
session from the JAMB score. Thus, there is 
significance relationship between JAMB score and 
student’s CGPA. Again, it can be concluded that the 
parametric OLS regression performs better than its 



 

  

 

Copyright © 2016 IJISM, All right reserved 
179 

International Journal of Innovation in Science and Mathematics 
Volume 4, Issue 5, ISSN (Online): 2347–9051 

 

non-parametric Theil’s regression since their residual 
standard error, AIC and BIC values are all smaller. 
Let us now detect outliers in the data set, and 
expunge them to enable us re-analyze the data. Using 
the R Software package, the output is shown below; 

 
 

 
 

It can be observed that observations 6, 9, 12, 17, 22 and 
24 are possibly problematic to our model. We shall now 
delete these observations and then re-analyze the data. 
 

X. ANDERSON-DARLING NORMALITY TEST 
 
> amara = resid(jude) 
> ad.test (amara) 
 
data:  amara 
A = 0.62716, p-value = 0.08695 
 

The result showed that the residuals are from a normal 
distribution. 
 

 

 
 
XI. OUTPUT FOR PARAMETRIC ORDINARY  OLS 
 

Residuals: 
    Min       1Q       Median        3Q         Max  
-0.43741 -0.05902  0.06486   0.10300  0.31184  
 
Coefficients: 
              Estimate Std. Error  t value  Pr(>|t|)     
(Intercept) -0.553806   0.484645 -1.143  0.269     
JAMB        0.016925  0.002106 8.038 3.42e-07 *** 
--- 
Signif. codes:   
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1962 on 17 degrees of freedom 

Multiple R-squared:  0.7917,    Adjusted R-squared:  
0.7794  
F-statistic:  64.6 on 1 and 17 DF,  p-value: 3.424e-07 
> AIC(jude) 
[1] -4.087108 
> BIC(jude) 
[1] -1.253791 
 

XII. O UTPUT FOR NON-PARAMETRIC THEIL ’S 

REGRESSION 
 
Residuals: 
     Min       1Q              Median     3Q       Max  
-0.52459  -0.10816  -0.00903  0.04844  0.21286  
 
Coefficients: 

Estimate   MAD V      value  Pr(>|V|)     
(Intercept) -0.129644  0.527037   66     0.258     
JAMB        0.015328  0.002226  190 3.81e-06 *** 
--- 
Signif. codes:   
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Residual standard error: 0.2087 on 17 degrees of 
freedom 
 
> AIC(jude) 
[1] -1.728739 
> BIC(jude) 
[1] 1.104578 
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Having carried out the analysis without outliers, we can 
conclude that from the result that student’s CGPA can be 
predicted at the end of any academic session from the 
JAMB score. Thus, there is significance relationship 
between JAMB score and student’s CGPA. Again, it can 
be concluded that the parametric OLS regression performs 
better than its non-parametric Theil’s regression since their 
residual standard error, AIC and BIC values are all 
smaller. 

 
XIII. C ONCLUSION  

 
From the analysis, the result revealed that there is a 

significant relationship between students CGPA and their 
JAMB scores for both the parametric OLS regression and 
non-parametric Theil’s regression with and without 
outliers. It was concluded that the parametric OLS is better 
than its non-parametric Theil’s regression for both data 
with and without outliers since their standard error, AIC 
and BIC are both lower than that of Theil’s regression. It 
was also concluded that the standard error for the 
parametric regression with outliers which is 0.3405 
reduced to 0.1962 for the parametric regression without 
outliers. On the other hand, the standard error for the non-
parametric regression with outliers which is 0.3609 
reduced to 0.2087 for the non-parametric regression 
without outliers. This implies that the model for data 
without outliers is more efficient than the model for data 
with outliers for both the parametric and non-parametric 
regression. Therefore the researchers recommend that 
future researchers should look at a similar work with large 
sample size to examine the differences between the 
parametric and nonparametric Regression. 
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