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Abstract – The aim of this paper is to gain a better understanding of the nature of imaginary numbers, considering 

them as mathematical objects characterized by a lower dimensionality than that of real numbers. For this purpose, in 

addition to an article written a few years ago on the dimensional aspect of mathematical objects, reference will be 

made to the rules of arithmetic presented by Brahmagupta. In particular, it will be emphasized that even the nature 

of the arithmetic operation of multiplication has been misunderstood with regard to the roots of negative numbers. 

The negative numbers from which the square root is extracted are not to be seen as the result of a multiplication 

performed on the real straight line, i.e. without changing the nature of the multiplicand, but as the product between 

quantities of the same nature, a product that generates mathematical objects characterized by a nature different 

from that of the multiplicand. An alternative graphic approach to the usual one will finally better clarify the nature 

of imaginary numbers, highlighting their concreteness. 
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I. INTRODUCTION 

Some years ago a paper was published on the different dimensional nature of mathematical objects [1]. The 

paper, while agreeing with Aristotle's view that lines are not composed of points [2], challenged his view that a 

line is generated by the movement of a point [3]. It should be pointed out that both of Aristotle's theses have 

been shared in modern times by various authors. However, in the cited paper [1] it is argued that for geometric 

objects (and in general also for other mathematical objects, such as sets) it is crucial to regard their 

dimensionality. The paper [1] states in particular that “A point has no dimension but it is not nothing”, that 

“There are no Points without N-Dimensional Geometric Objects (With n  > 0)” and that “No one of Geometric 

Objects with at Least one Dimension is Generated by Points”. The generation process of geometric objects is 

therefore the opposite with respect to that usually proposed: a point (zero-dimensional) does not generate a line, 

but it is a position in a line or in a mathematical object with more dimensions: it exists if those objects exist. 

Moreover, mathematical objects with different dimensionality (for example: points and lines, lines and planes, 

but also sets and power sets) are not really comparable, “even if it is possible to put in biunivocal 

correspondence the points of a straight line,  a plane or a volume with the points of a segment as small as you 

want”, because “they are only sets of points which we can identify into a segment, a straight line and so on, and 

not segments, straight lines and so on” [1]. 

In what follows, the theses proposed in the aforementioned paper concerning the dimensionality of 

mathematical objects will be taken into account in order to address the problem of the nature of a mathematical 

object that has long not been considered truly real: imaginary numbers. 

II. IMAGINARY NUMBERS AND NATURE OF MULTIPLICATION 

Kronecker [4] said that God created natural numbers and that all the rest is a creation of man. Man's 

'creations' could apparently include imaginary numbers (so called by Descartes [5]). The root of negative 
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numbers had appeared, for the purpose of solving cubic equations by applying the Del Ferro-Fontana formula, 

in Cardano's "Ars Magna" [6] (thus violating the promise made to Fontana, better known as Tartaglia, not to 

publish the formula). The imaginary unit, successively named i by Euler (quoted by Merzbach and Boyer [7]), 

was introduced by Bombelli [8], who said it "numero sofistico" (sophistic number). However, Gauss (quoted by 

Bell [9]), to emphasize the full right of their existence, proposed another name for them: lateral numbers, due to 

their representation on the sides of the number line, in the Argand-Gauss (or complex) plane (actually, the 

complex plan had already been proposed by Wessel [10], but went almost unnoticed because it was presented in 

Danish). Gauss also suggested the name direct numbers and inverse numbers for positive and negative numbers. 

However, while the use of imaginary (and complex) numbers has had increasingly wide applications thanks 

to the complex plane, the deep nature of these numbers has remained somewhat mysterious. In what follows, an 

attempt will be made to better define the nature of these numbers, showing that, by looking more closely at their 

dimensionality, they can reveal a nature that is anything but imaginary. For this purpose, it is opportune to go 

back at least to the arithmetic rules provided by Indian mathematicians. 

Brahmagupta [11] was the first mathematician to write about the rules for doing arithmetic with zero and 

negative numbers. He named “fortunes” the positive numbers and “debts” the negative numbers. Therefore, 

following his approach, a debt subtracted from zero is a fortune and a fortune subtracted from zero is a debt. 

As we know, in a multiplication, given two factors a and b, the first term (a) is the multiplicand, while the 

second (b) is the multiplier. In other words, the operation a b tells us that a is added b times to 0 (or, in terms of 

sets, a elements must be inserted b times in the empty set). Multiplication is commutative: the product of a b is 

equal to the product of b a, even if the operations are not exactly the same: in fact a b tells us that a is added b 

times to 0, while b a tells us that b is added a times to 0. So, the expression (- a) b = - c tells us that the “debt” - 

a is added b times to 0, giving the negative result - c, but we obtain the same result with a (- b), which signifies 

that the “fortune” a is subtracted b times from 0. Finally, - a (- b) indicates that the debt - a is subtracted b times 

from 0, thus obtaining the positive value (fortune) c. 

The result of these multiplications can be represented on the Cartesian axis of abscissas and this is a crucial 

point: multiplication usually does not change the nature of the objects, whose magnitude is measured by the 

term c, whatever its sign (fortune or debt, the unit of measurement is the same). Consequently the result c will 

always be represented on the straight line of real numbers. 

III. MULTIPLICATION AND THE DIMENSIONAL NATURE OF IMAGINARY NUMBERS WITH 

RESPECT TO REAL NUMBERS 

This does not happen for imaginary numbers: i represents the square root of - 1, but we know that multiplying 

any number by itself, regardless of its sign, yields a positive value. Yet, approaching the problem, as done by 

Brahmagupta, from an economic point of view, and taking into account what sustained about the different 

nature of mathematical objects with different dimensionality [1], it is not difficult to imagine, to do a trivial 

example, a negative plot of land, in the sense that it still has to be worked both lengthwise and widthwise, 

compared to a plot of land that is already worked and is therefore active, in terms of work, for its owner. As 

mentioned above, multiplying a quantity a of objects by b, the nature of the result c is the same as a. This is not 

the case if the multiplicand and the multiplier are of the same or similar nature. For example, the product of a 
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length by a length gives a result that can not be expressed in terms of length, but in terms of surface. They are all 

spatial quantities, but they are mathematical objects with different dimensionality  that, according to Paolilli [1], 

are not comparable. 

For purely explanatory purposes, we can therefore imagine real numbers as two-dimensional mathematical 

objects (like surfaces) and imaginary numbers as one-dimensional mathematical objects. Consequently, the 

straight line of real numbers will become a strip with a width of √   (that is i) from - ∞ to 0 or √  from 0 to + 

∞. Thus, real numbers will be represented by horizontal stripes and imaginary numbers by vertical segments 

(see Figure 1 and Figure 2; note that only the square root of a negative number must be indicated by a segment 

and therefore by a complex number). 

It is no coincidence that in the complex plane multiplying a real number by i is equivalent to making a 

rotation of 90 degrees (counterclockwise), that is exactly half the rotation determined by the multiplication of 

two real numbers, the second of which (multiplier) is negative. In fact, to make an example, if real and 

imaginary numbers are two-dimensional and one-dimensional mathematical objects respectively, then (- i)
 4

 = (- 

1)
 2
. 

 

Fig. 1. Real numbers are measured on the strip: their absolute value increases as the distance from 0 (and thus the surface of the part of the 

strip that represents them) increases. Imaginary numbers are measured by segments above and below the strip. Their point 0 lies on the 

upper edge and the lower edge of the real numbers strip. 

 

Fig. 2. An example of a representation of a complex number (a + b i) on a diagram like the one in Figure 1. As in the complex plane, the 

coefficient b is measured on the vertical axis. 
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However, it is more practical, and especially more in line with the current use of mathematics, to consider 

real numbers and imaginary numbers as one-dimensional and half-dimensional (that is elevated at 0.5) objects 

respectively. In this way real numbers will be segments on the real number line, while imaginary numbers will 

be measured on the y-axis that cuts the real number line at point 0 (Figure 3). 

 

Fig. 3. In the complex plane the same complex number of Figure 2 is represented. The real number a is represented by the segment 0a, while 

b is indicated by the (one-dimensional) segment 0b which is, however, zero-dimensional with respect to the line of real numbers. 

We have therefore returned to using the Argand-Gauss plane, although in this way the actual nature of the 

imaginary numbers may not be as evident as in Figure 2. 

IV. CONCLUSION 

The aim of this paper is to better understand the nature of imaginary numbers. To do this, it has been 

observed that they can be seen as mathematical objects characterized by having a lower dimensionality than real 

numbers. The basic arithmetic rules shown by ancient Indian mathematicians have also been used and analyzed. 

The conclusion is that imaginary numbers, whose symbol i could indicate a better-named "infranumeric unit", or 

infranumber, have the same level of reality as real numbers but have a lower dimensionality and therefore only 

their squares are truly comparable with real numbers. 
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