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Abstract – The k-Fibonacci and the k-Lucas numbers are particular cases of the different generalizations of the 

classical Fibonacci and Lucas numbers made by different authors. In this paper, first of all, we present the k-Fibonacci 

and the k-Lucas numbers and we remember some of the properties that we will need throughout this article. Then, we 

study the relationship between the product of two k-Fibonacci or k-Lucas numbers with subscripts in linear form and 

the k-Lucas numbers. We thus enter the main part of the paper and find the generating function of some k-Fibonacci 

and k-Lucas numbers, that can be used later studies. It is interesting to note that because the definition of the k-

Fibonacci and the k-Lucas numbers is based on the same recurrence relation, we find that generating functions are 

similar for both types of numbers. As for the denominators, there is only difference in some sign, while the numerators 

are different because the initial conditions of both sequences are different. By last, we give examples of application of 

the preceding formulas to find the generation function of some new sequences. 

Keywords – k-Fibonacci and k-Lucas numbers, Binet Identity, Generating Function, Convolution. 

I. INTRODUCTION 

One of the more studied sequences is the Fibonacci sequence [1, 2, 3, 4] and it has been generalized in many 

ways [5]. Here, we use the following one-parameter generalization of the Fibonacci sequence [6, 7]. 

1.1 Definition 1 

For any integer number 1,k  the k-Fibonacci sequence, say ,   k n n N
F


, is defined recurrently as 

, 1 , , 1k n k n k nF k F F   for 1n   with initial conditions
,0 0kF  , 

,1 1kF   

First few k-Fibonacci numbers are 2 30,  1,  ,  1,  2 , .k k k k   Note for k = 1 the classical Fibonacci sequence 

is obtained and for k = 2, it is the Pell sequence:  

 0,1,1,2,3,5,8,F  , A000045 in OEIS [8]. 

 0,1,2,5,12,29,70,P  , A000129 

Characteristic equation from the definition is 2 1r k r   whose solutions are 
2

1,2

4

2

k k


 
 that verify the 

following properties: 

2 2

1 2 1 2 1 2 1 2   1,     ,       4,     1, 0, 0.k k k                   

Generating function of the k-Fibonacci numbers is
2

( , )
1

x
f k x

k x x


 
. For the properties of the k-Fibonacci 

numbers see [6, 7]. We can find any k-Fibonacci number by mean of the Binet Identity [9] 1 2
,

1 2

n n

k nF
 

 





. Finally, 

1

, ,( 1)n

k n k nF F
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1.2 Definition 2 

For any integer number   1k  , the k–Lucas sequence, say ,k n n N
L


, is defined recurrently as 

, 1 , , 1k n k n k nL k L L   for 1n   and initial conditions ,0 2kL  , ,1kL k , [10]. 

For k = 1 the classical Lucas sequence is obtained and for k = 2, it is the Lucas-Pell sequence. Generating 

function of the k-Lucas numbers is 
2

2
( , )

1

k x
l k x

k x x




 
. Binet Identity for the k-Lucas numbers is , 1 2 .n n

k nL   

The k-Lucas numbers are related to the k-Fibonacci numbers by the relation
, , 1 , 1k n k n k nL F F   . Moreover,

, ,( 1)n

k n k nL L    in [11] the following formulas are proven. If  0r N  ,  

, ( 1) , , ,

,

,

( 1) ( 1)

( 1) 1

r pm
k r m p k rm p k r p k p

k ri p r
i o k r

L L L L
L

L

   





    


  
                                                      (1) 

, ( 1) , , ,

,

,

( 1) ( 1) ( 1)
( 1)

( 1) 1

m r m mm
k r m p k rm p k r p k pi

k ri p r
i o k r

L L L L
L

L



   





     
 

  
          (2) 

In particular,  , , 1 ,

0

1
2

n

k j k n k n

j

L L L k
k





   
 

II. PRODUCT OF TWO k-FIBONACCI AND k-LUCAS NUMBERS 

Before we prove a lemma that we need to find the sum of the products of two k-Fibonacci numbers with 

subscripts in linear form. 

2.1 Lemma (Product of two k-Fibonacci Numbers) 

Let p, q be integer numbers. Product of two k-Fibonacci numbers is  

 , , , ,2

1
( 1)

4

q

k p k q k p q k p qF F L L
k

   


           (3) 

Proof.  

Applying the Binet Identity, and taking into account
1 2 1    , 

     

     

 

, , 1 2 1 2 1 2 1 2 1 22 2

, 1 2 1 2 , 1 22 2

, ,2

1 1

4 4

1 1
( 1)

4 4

1
( 1)

4

p p q q p q p q p q q p

k p k q

p q q q q p q q q p q p q

k p q k p q

q

k p q k p q

F F
k k

L L
k k

L L
k

         

     

 

     

 

 

      
 

      
 

  


2.2 Relationship between the k-Fibonacci and the k-Lucas Numbers 

If in the equation (3) it is q = 1, we obtain the formula that relates the k-Fibonacci and the k-Lucas numbers: 

 , , 1 , 12

1

4
k p k p k pF L L

k
  


              (4) 

2.3 Sum of the Products of two k-Fibonacci Numbers with Subscripts in Linear form 

If in the equation (3) it is p ai r   and q bi s  , then  
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 , , ,( ) ( ) ,( ) ( )2

1
( 1)

4

bi s

k ai r k bi s k a b i r s k a b i r sF F L L
k



         


           (5) 

From this equation (5), the sum of the products of two k-Fibonacci numbers with subscripts in linear form is  

, , ,( ) ( ) ,( ) ( )2
0 0 0

1
( 1)

4

n n n
s

k ai r k bi s k a b i r s k a b i r s

i i i

F F L L
k

       

  

 
   

  
          (6) 

where the sums are calculated by means of the formulas (1) and (2), doing ,m a b  ,p r s  or ,m a b 

.p r s   

Find the form of this formula lacks interest and it is much more practical to impose conditions to the numerical 

values involved in it. 

2.4 Theorem: Sum of the Squares of the k-Fibonacci Numbers 

The sum of the squares of the k-Fibonacci numbers is  

 ,2 ( 1) ,22

, 2
0 ,2

1
( 1) ( 1) 1

4 2

n
k a n k an an a

k ai

j k a

L L
F n

k L





 
         

           (7) 

We will divide the proof in two parts according “a” is odd or even. In the formula (3), if both subscripts are 

equal, then 

 2

, ,22

1
2( 1)

4

p

k p k pF L
k

  


            (8) 

In the formula (6), let us suppose , 0.b a s r    Then, 

(1) If “a” is odd ( 2 1a p  ), the sum of the squares is  

, 2(2   1) (   1) , 2(2 1)2

, (2   1) 2
  0 ,2(2 1)

1
  ( 1)

  4 2

n
k p n k p n n

k p i

i k p

L L
F

k L

  



 

 
   

   
  

Proof. 

If we apply the formulas (8), (6) and (1),  

2 (2 1)

,(2 1) ,2(2 1)2
0 0 0

1
( 1) 2

4

n n n
p i

k p i k p i

i i i

F L
k



 

  

 
   

  
    

(2 1)
,2(2 1)( 1) ,2(2 1) ,2(2 1) ,0

2

,2(2 1)

1 ( 1) 1
2

4 2 2

p n
k p n k p n k p k

k p

L L L L

k L


   



     
     

 

,2(2 1)( 1) ,2(2 1)

2

,2(2 1)

1
( 1)

4 2

k p n k p n n

k p

L L

k L

  



 
      

 

(2) Similarly, if “a” is Even ( 2a p ), 
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, ( 1) ,42

,2 2
0 ,

1
2 1

4 2

n
k p n k pn

k pi

i k p

L L
F n

k L





 
      

  

Joining both formulas in one we obtain the formula (7). 

As particular cases 

,2 12

, 2
0

1
( 1)

4

n
k n n

k i

i

L
F

k k





 
   

  
  

,4( 1) ,4 ,4 22 2

,2 ,22 2 2
0 0,4

1 1
2 1 2 1

4 2 4

n n
k n k n k n

k i k i

i ik

L L F
F n F n

k L k k

 

 

   
               

   

,6( 1) ,62

,3 2
0 ,6

1
( 1)

4 2

n
k n k n n

k i

i k

L L
F

k L





 
      

  

 
,8( 1) ,8 ,82 2

,4 ,4 22 2
2 2

0 0,8

1 1
2 1 2 1

4 2 4 2

n n
k n k n k n

k i k i

i ik

L L F
F n F n

k L k k k

 

 

  
                 

   

If     1a r   and ,b a  the equation (6) is 

,2 ( 1) 2 ,2 2 ,2 2 ,22

, 1 2
0 02

1
   2 ( 1)

4 2

n n
k a n k an k a k ai

k ai

i ik a

L L L L
F

k L

   



 

   
   

  
   

Simply apply again formulas (8), (6) and (1). 

In particular, if 2,a  the sum of the squares of the odd k-Fibonacci numbers, taking into account the equation 

(4), is  

, 4   6 , 4   2 , 4   42

, 2   1 2 2 2
  0

1 1
2 1 2( 1)

4 ( 4) 4

n
k n k n k n

k i

i

L L F
F n n

k k k k k

  





   
        

     
  

2.5 Sum of the Products of two Consecutive k-Fibonacci Numbers 

If 1, 0, 1,b a r s    the equation (6) becomes 

,2( 1) 1 ,2 1 ,1 ,1

, , 1 ,2 1 , 1 , 12 2
0 0 0 ,2

1 1 ( 1) 1
( 1)

2 24 4

nn n n
k n k n k ki

k i k i k i k k

j i i k

L L L L
F F L L L

Lk k

  

   

  

      
            

    

,2 2 ,2 2

, , 12 2 2
0

2 21 1
( ) ( )

4 4

n
k n k n

k i k i

i

k L k L
k n F F k n

kk k k
 

 





    
       

    
  with  

( 1) 1
( )

2

n

n
 

  

2.6 Sum of the Products of Two k-Lucas Numbers 

First we will prove  

, , , ,( 1)q

k p k q k p q k p qL L L L           (9) 

Proof. 
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Taking into account the Binet Identity 
, 1 2

r r

k rL     and 
1 2· 1    , it is 

        

 

, , 1 2 1 2 1 2 1 2 1 2 , 1 2 1 2

, 1 2 ,( 1) ( 1)

p p q q p q p q p q q p p q q q q q p p

k p k q k p q

q p q p q q

k p q p q k p q

L L L

L L L

             

 

     



 

  

         

      

Then, the sum of the products of two k-Lucas numbers is similar to the formula (6) without the coefficient 2

1

4k 

and changing ( 1)s  by ( 1) :s   

,   ,   , (   )   (   ) , (   )  (   )

0 0 0

     ( 1)  ( 1)  
n n n

s bi

k ai r k bi s k a b i r s k a b i r s

i i i

L L L L       

  

       

In particular  

,2 2

, , 1

0

2
( )

n
k n

k i k i

i

L
L L k n

k







   

,2 12

,

0

2 ( 1)
n

k n n

k i

i

L
L

k





     

,4 4 ,4 ,4 22

,2 2 2
0

2 3 2 3
( 4)

n
k n k n k n

k i

i

L L F
L n n

kk k

 




     


  

,4 6 ,4 2 ,4 42

,2 1 2 2
0

2 2 2 2
( 4)

n
k n k n k n

k i

i

L L F
L n n

kk k

  






     


  

III. GENERATING FUNCTION OF SOME K-FIBONACCI AND K-LUCAS NUMBERS 

From definition of k-Fibonacci numbers it is easy to prove 

2

, , 2 , 4( 2)k p k p k pF k F F               (10) 

3.1 Theorem: Generating Function of the even k-Fibonacci Numbers 

Generating function of the even k-Fibonacci numbers  ,2k nF is 
2 2

( )
1 ( 2)

e

k x
f x

k x x


  
 

Proof.  

Taking into account the recurrence relation (10) 

2 3

,0 ,2 ,4 ,6

2 2 2 2 2 3

,0 ,2 ,4

2 2 3

,0 ,2

( )

( 2) ( ) ( 2) ( 2) ( 2)

( )

e k k k k

e k k k

e k k

f x F F x F x F x

k x f x k F x k F x k F x

x f x F x F x

    

       

  

 

 
 2

,0 ,2 ,02 2

2 2 2 2

( 2)
( ) 1 ( 2) ( )

1 ( 2) 1 ( 2)

k k k

e e

F F k F x k x
f x k x x f x

k x x k x x
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From the equation (3), . So, and taking into account Theorem 4, the 

generating function of the sequence  , , 1k n k nF F   is 

 
2 2 2 2 2 3

1 (1 )
( , )

14 1 ( 2) 1 ( 1)( )

k x k k x
ff k x

xk k x x k x x x

 
   

        

 

From the equation (9), , , 1 ,2 1 ( 1) .j

k j k j k jL L L k     Then, the generating function of the sequence 

 , , 1k n k nL L 
 is 

2 2

2 2 3

(2 2 )
( , )

1 ( 1)( )

k k x x
ll k x

k x x x

 


   
 

Finally, the generating function of the sequence  2

,k nF  is 
2

2 2 3
2( , )

1 ( 1)( )

x x
f k x

k x x x




   
 

3.2 Generating Function of the Sequences , 2k n iL 
and  , 2( 1)i

k n iL   

Special cases are the finite sequences  , 2k n iL 
 and , 2k n iF 

whose generating functions we will find next. 

Let ( , )p k x the generating function of the sequence    , 2 , , 2 ,, , ,k n i k n k n k nL L L L   finalizing in 
,1kL or 

,0kL

according to “n” is odd or even, respectively. Then, taking into account the formula (10) 

2 3

, , 2 , 4 , 6

2 2 2 2 2 3

, , 2 , 4

2 2 3

, , 2

( , )

( 2) ( , ) ( 2) ( 2) ( 2)

( , )

k n k n k n k n

k n k n k n

k n k n

p k x L L x L x L x

k x p k x k L x k L x k L x

x p k x L x L x

  

 



    

       

  

   

 

2 2 2

, , 2 ,

2

, , 2 , , , 2

2 2 2 2

1 ( 2) ( , ) ( 2)

( 2)
( , ) ( , )

1 ( 2) 1 ( 2)

k n k n k n

k n k n k n k n k n

k x x p k x L L k L x

L L k L x L L x
p k x p k x

k x x k x x



 

       

   
  

     

 

Similarly, we can prove the generating function of the alternated sequence , 2( 1)i

k n iL  is

, , 2

2 2
( , )

1 ( 2)

k n k nL L x
pa k x

k x x




  
 

We can use this method to find the generating function of some special k-Fibonacci and k-Lucas sequences. 

Next we present some of them: 

a)  ,2 2 21 ( 2)
k n

k x
F

k x x  
 

b)  ,2 1 2 2

1

1 ( 2)
k n

x
F

k x x




  
 

c)  
2

,2 2 2

2 ( 2)

1 ( 2)
k n

k x
L

k x x

 

  
 

d)  ,2 1 2 2

(1 )

1 ( 2)
k n

k x
L

k x x




  
 

e)  ,2 2 2
( 1)

1 ( 2)

n

k n

k x
F

k x x




  
 

 , , 1 ,2 12

1
( 1)

4

j

k j k j k jF F L k
k

   




 

Copyright © 2019 IJISM, All right reserved 

115 

International Journal of Innovation in Science and Mathematics 

Volume 7, Issue 2, ISSN (Online): 2347–9051 

 

f)  ,2 1 2 2

1
( 1)

1 ( 2)

n

k n

x
F

k x x





  
 

g)  
2

,2 2 2

2 ( 2)
( 1)

1 ( 2)

n

k n

k x
L

k x x

 


  
 

h)  ,2 1 2 2

(1 )
( 1)

1 ( 2)

n

k n

k x
L

k x x





  
 

i)  , , 1 2 2 31 ( 1)( )
k n k n

k x
F F

k x x x


   
 

j)  
2 2

, , 1 2 2 3

(2 2 )

1 ( 1)( )
k n k n

k k x x
L L

k x x x


 

   
 

k)   , , 2

, 2 2 21 ( 2)

k n k n

k n i

L L x
L

k x x







  
 

3.3 Applications 

These formulas can be used to find the generating functions of the sequences of k-numbers whose general terms 

can be expressed as a linear expression of k-Fibonacci or k-Lucas numbers.  

Example 1. 

Generating function of the sequence  2

,k nF  

From the equation (3),  2

, ,22

1
( 1) 2 .

4

n

k n k nF L
k

  


Then, its generating function is is a combination of the 

generating function of 
,2k nL and that of ( 1)n : 

         
2 2 2

2

, ,22 2 2 2 2 2 2 3

1 1 2 ( 2) 1 1 ( 4)( )
. . . . 2 . . ( 1) 2

14 4 1 ( 2) 4 1 ( 1)( )

n

k n k n

k x k x x
g f F g f L g f

xk k k x x k k x x x

    
      

          

 

 
2

2

, 2 2 31 ( 1)( )
k n

x x
F

k x x x



   

 

It is interesting to note the denominator of this generating function shows the recurrence relation of the squares 

of the k-Fibonacci numbers:   2 2 2 2 2

, , 1 , 2 , 31k n k n k n k nF k F F F       

Example 2: 

Generating function of the sequence  2

,k nL  

From the equation (9), 
2

, ,2 ( 1) 2n

k n k nL L   and using the formula © of the page 9, the generating function of 

the
2

,k nL numbers is 
2 2 2 2

2 2 2 2 3

2 ( 2) 2 4 (3 4)
2( , )

11 ( 2) 1 ( 1)( )

k x k x k x
l k n

xk x k x x x

    
  

      
 

Recurrence Relations [12]. 

On the other hand, the denominator of these generating functions shows the recurrence relation for both seque- 
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-nces is 2

, , 1 , 2 , 3( 1)( )k n k n k n k nM k M M M      with initial conditions 2 2 2 2

, 0 , 0 , 1 , 1 , 2 , 20, 1,k k k k k kM F M F M F k     

and 2 2 2 2 2 2

,0 ,0 ,1 ,1 ,2 ,24, , ( 2) ,k k k k k kM L M L k M L k        respectively. 

IV. CONCLUSIONS 

In this article we have used two different ways to find the generating function of the k-numbers. 

In the first place, we have used the general method that consists of following the indications shown in the law 

of recurrence of the different types of k-numbers. We have used this method to find the generating function of 

even numbers in section 3.1 from formula (10). 

Second, to find the generating function of some more complex numbers, we have transformed them into simpler 

ones and later found the generating function of these new numbers. So we have done in Example 1, to find the 

generating function of the squares of the k-Fibonacci numbers. 

Consequently, this paper can serve as a basis for other researchers to find the generating function of some more 

complex expression k-numbers.  

REFERENCES 

[1] A.F. Horadam, A generalized Fibonacci sequence, Math. Mag. 68 (1961) 455-59. 

[2] S. Vajda, Fibonacci & Lucas Numbers, and the Golden Section, Theory and Applications. Ellis Horwood limited; 1989. 

[3] M. Livio, The Golden Ratio: The Story of Phi, The World’s Most Astonishing Number, Broadway Books, New York, 2002. 
[4] M.S. El Naschie, E-eight exceptional Lie groups, Fibonacci lattices and the standard model, Chaos, Soliton Fract., in press. doi:10.1016/, 

j.chaos.2008.05.015. 

[5] V.E. Hoggat, Fibonacci and Lucas numbers, Palo Alto, CA: Houghton-Mifflin; 1969. 
[6] S. Falcon, A. Plaza, On the Fibonacci k-numbers, Chaos, Solit. & Fract. 320(5), (2007) 1615-1624. 

[7] S. Falcon, A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos, Solit. & Fract. 33(1), (2007) 38-49. 

[8] N.J.A. Sloane, editor, The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org 
[9] E. Kilic, the Binet formula, sums and representations of generalized Fibonacci p-numbers, Eur. J. Combin. 29 (3) (2008) 701–711. 

[10] S. Falcon, on the k--Lucas numbers, Int. J. Contemp. Math. Sciences, 6(21), (2011) 1039-1050. 

[11] S. Falcon, on the k--Lucas numbers of arithmetic indexes, Applied Mathematics, 3, (2012) 1202-1206. http://dx.doi.org/10.4236/ 
am.2012.310175 

[12] S. Yang, on the k-generalized Fibonacci numbers and high-order linear recurrence relations, Appl. Math. Comput. 196 (2) (2008) 850–

857. 

AUTHOR’S PROFILE 

 

Sergio Falcon 

PhD in Mathematics from the University of Las Palmas of Gran Canaria (ULPGC). Professor at the Institute and later 
Professor of the ULPGC for 20 years. Currently, honorary professor of this university. Professor coordinator of Mathematics 

of the School of Architecture of the ULPGC for 10 years. He was awarded the Prize for Teaching Work by the ULPGC as 

best professor in the branch of Sciences in 2003. Publications of almost one hundred articles of Mathematical Research, 
almost half of them in WOS impact journals. Also articles of Didactics and teaching of non-university Mathematics. Several 

books of university mathematics. Participation in international and national mathematical congresses, in some of them as a  
visiting professor. Director of several End-of-Degree Projects of the Telecommunications School of the ULPGC. Tutor professor of a 

doctoral thesis in Mathematics Didactics. Reviewer of articles of Mathematical Investigation in several international magazines as well as in 

Didactics of Mathematics. Member of the editorial committee of the Mathematics Teaching Journal, Bulletin of the "Puig Adam" Society of 
Mathematics Teachers. email id: sergio.falcon@ulpgc.es ; Phone 034 928458827. 

 

 

http://dx.doi.org/10.4236/am.2012.310175
http://dx.doi.org/10.4236/am.2012.310175
mailto:sergio.falcon@ulpgc.es

