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Abstract – Eikonal approximation method is one of the 

theoretical frameworks of quantum mechanics to study 
scattering process; this approximation was applied to explain 
the total cross section for the interaction. Result shows that 
the total cross section for electron Lutetium collision is 
dependence on energy ranging from 1.0eV to 1000.0eV. This 
result is in agreement at these incident energies range when 
compared with NIST SRD 64.This result obtained were 
significant at higher energies.  
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I. I NTRODUCTION  
 

The interaction between photons, electrons, atoms and 
molecule are fundamental to the process of life, the 
universe and almost everything, the analysis of scattering 
has yield most of our present knowledge of elementary 
particle physics (Cox, Deweerd and Linder, 2002), 
Compton scattering of X-Rays by electron is often cited as 
experimental evidence for the particle nature of the photon 
(Cox, Deweerd and Linder, 2002).Rayleigh and Mie 
scattering are the theoretical framework of light scattering 
theory, these theoretical result explain the blue and red 
sunset. 

Electron scattering from atom is usually divided in to 
elastic and inelastic scattering, in the former the electron 
exchanges momentum q with the atom and is deflected 
with no or very small energy loss. In the latter the 
scattered electron changes the electron configuration of the 
scattering atom without transferring momentum to the 
nucleus (Vos, 2010), a wide variety of approximation have 
been used to investigate scattering process, the theoretical 
study employed in this work is eikonal approximation to 
compute total cross section (TCS) i.e. a measure of the 
probability that an interaction occur (Abdu, Onimisi and 
Kunya, 2014). A cross section has dimension of area 
which is cm2 or m2, since the nuclear radii are of the order 
of 10-14m to 10-15m, thus cross section are normally 
measured in Barn (1barn=10-28m2)(Goshal, 2005), the 
atomic unit is also a common unit that can be used or 
amstrong square. 

 
II. SCATTERING THEORY  

 
Consider a particle of mass m and energy 
 

 � = ħ���
2� › 0                                                                   (1)  

Described by a plane wave 
 
 Ѱ�� = ����                                                                      (2)   
 
Traveling in the Z- direction that satisfy Schrödinger 

wave equation. 
 

− ħ�
2� ��� + �� = ��                                              (3) 

 
The free particle wave function becomes “distorted” in 

the presence of a potential �(�). the distorted wave 
function is composed of an incident plane wave and a 
scattered wave.   

 

Ѱ�� = ���� + �(�) ��� 
�                                            (4) 

 
Equation (4) can be calculated by solving the 

Schrödinger wave equation. Where �(�) "# the complex 
scattering amplitude embodies the observable scattering 
properties and is the basic function we seek to determine. 
Moreover, collisions are always characterized by the 
differential cross section (that is, measure of the 
probability distribution) given by: 
 $%

$& = |�(�)|�                                                            (5) 

 
This has the simple interpretation of the probability of 

finding scattered particles within a given solid angle. The 
total cross section can be obtained by integrating the 
differential cross section on the whole sphere of 
observation (4π steradian). 
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III. E IKONAL APPROXIMATION  

 
For scattering problems where the potential V(x) is 

much smaller than the energy, one can make use of the 
Eikonal approximation in order to solve the problem. This 
approximation covers a situation in which the potential 
varies very little over distances of the order of Compton 
wavelength. This approximation is semi classical in 
nature; it is essence is that each ray of the incident plane 
wave suffers a phase shift as it passes through the potential 
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on a straight line trajectory as shown in Fig. 1.were, r= 
(b2+z2)1/2. 

 
Fig. 1. Geometry of Eikonal approximation 

 
The approximation can be derived by using the semi 

classical wave function 
 

Ѱ(�) = 2(�)���3.                                                         (7) 
 
Where, ϕ(r) is a slowly-varying function, describing the 

distortion of the incident wave. The dynamic of the motion 
can be described by Schrödinger wave equation    

                                                                       
−ћ�
2� ∇�Ѱ(�) + �(�)Ѱ(�) = �Ѱ(�)                            (8)   

 
Putting equation (7) in equation (8) we have 
 

−ћ�
2� (2"8�∇ + ∇�)2(�) + �2(�) = 0                            (9)     

 
If we now assume that ϕ(r) varies slowly enough so that 

the  � 2
ϕ term can be ignored (i.e. k is very large), we have 

 
��ħ:

;
<

<� 2(=, ?) = �(=, ?)2(=, ?)                                    (10)
  

Here, we have introduced the coordinate b in the plane 
transverse to the incident beam, so that; 

 
�(=, ?) = �(�)                                                                 (11) 
 
From, Fig.1       

 � = (=� + ?�)@
:                                                                 (12) 

 
From symmetry considerations, we expect that � will be 

azimuthally symmetric and so independent of b. equation 
(10) can be integrated immediately and using the boundary 
condition that � →1 as Z→ ∞   since there is no distortion 
of the wave before the particle reaches the potential, we 
have  

 
 

2(=, ?) = ���A(B,�)                                                    (13) 

C(=, ?) = − �
2ћ�8 ) �(=, ?D)$?

E

FE
                          (14) 

 
Having obtained the eikonal approximation to the 

scattering wave function, we can now obtain the eikonal 
scattering amplitude�(�), inserting equation (8) in to an 
exact integral expression for the scattering amplitude. 

 

�(�) = − �
2Gћ� ) �F��H. �(�)Ѱ(�)$I �             (15) 

We have, 
�J = F;

�.ħ: K $�= K $?E
FE �F�L. �(=, ?)2(=, ?)             (16)

   

Using eqn. (9), we can relate V(r)ϕ(r) directly to
<M
<� . 

Furthermore, if we restrict our consideration to 
relatively small scattering angles, so thatN� = 0, then the Z 
integral in equation (17) can be done immediately and 
using eqn. (15) for φ(r), we obtain. 

 

�J = − "8
2G ) $� =�F�L.BO���A(B) − 1P                 (17) 

  
With the profile function 

C(=) = C(=, ? = ∞) = − �
2ћ�8 ) �(=, ?)$?

E

FE
(18) 

 
Since χ is azimuthally symmetric, we can perform the 

azimuthally integration in equation (17) and obtain our 
final expression for the eikonal scattering amplitude. 

 

�J = −"8 ) =$=R/
E

0
(N=)O���A(B) − 1P                  (19) 

 
In deriving this expression, we have used the identity of 

Bessel function. 
 

 R/(N=) = 1
2G ) �F�LB�/�S

�.

0
$2                                (20) 

 
Hence, �J depend upon both � (through K) and q. 
An important property of the exact scattering amplitude 

is the optical theorem, which relates the total cross- 
section to the imaginary part of the forward scattering 
amplitude. After a bit of algebra, one can show that �J 
satisfied this relation in the limit that the incident 
momentum becomes large compared to the length scale 
over which the potential varies. 

 

 T = 4G
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E
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      (21) 

 
IV. CENTRAL POTENTIAL  

 
A three dimensional physical systems have a central 

potential i.e. a potential energy that depends only on the 
distance r from the origin �(�) = �(�). If we use 
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spherical coordinates to parameterize our three 
dimensional space, a central potential does not depend on 
the angular variable � and W. Therefore, in a scattering 
experiment it is easier to work in the Centre of mass 
frame, where a spherically symmetric potential has the 
form V(r) with � = |XYYYZ|, due to the quantum mechanical 
uncertainty (i.e. we can only predict the probability of 
scattering in a certain direction). 

In Born and eikonal approximation calculations of the 
scattering of electrons from atoms, in general it is a 
complicated multi- channel scattering problem, since there 
are reactions leading to final states in which the atom is 
excited. However, as the reaction probabilities are small in 
comparison to elastic scattering, for many purposes the 
problem can be modeled by the scattering of an electron 
from a central potential (Koonin and Meredith, 1989). 
This potential represents the combined influence of the 
attraction of the central nuclear charge (Z) and the 
screening of this attraction by the Z atomic electrons. For a 
target atom, the potential vanishes at large distances faster 
than �¯1

. A very accurate approximation to this potential 
can be solved for the self-consistent Hartree Fock potential 
of the neutral atom. However a much simpler estimate can 
be obtained using an approximation to the Thomas Fermi 
model of the atom given by Lenz and Jensen (Blister and 
Hautala, 1979). 

 

 � = − ?��
� �F\(1 + X + =�X� + =IXI + =]X])       (22) 

 
With, e²=14.409, b₂=0.3344, b₃=0.0485, b₄=2.647×

10¯I, and x=4.5397Z1/6 r1/2 
The potential is singular at the origin, However, if the 

potential is regularized by taking it to be a constant within 
some small radius rmin, (say the radius of the atom 1s shell), 
the  calculated cross section will be unaffected except at 
momentum transfers large enough so that  

 
b�;�� ≫ 1                                                                        (23) 

 
The incident particle is assumed to have the mass of the 

electron and is appropriate for atomic systems; all lengths 
are measured in angstrom (Å) and all energies in electron 
volt (eV). The potential is assumed to vanish beyond 2Å. 
Furthermore, the r-1 singularity in the potential is cut off 
inside the radius of the 1s shell of the atom. 

 
V. METHODOLOGY  

 
The computation of Eikonal approximation to the total 

cross section of Lutetium for a given central potential at 
specified incident energy, a FORTAN program developed 
by Koonin and Meredith (1989) have been used. The 
program is made up of four categories of file: common 
utility program, physics source code, data files and include 
files. 

The physics sources code is the main sources code 
which contains the routine for the actual computation. The 
data files contain data to be read into the main program at 

run-time and have the extension .DAT. The first thing 
done was the successful installation of the FORTRAN 
codes in the computer. This requires familiarity with the 
linker, editor and the graphics package to be used in 
plotting. The program runs interactively. It begins with a 
title page describing the physical problem to be 
investigated and the output that will be produced; next, the 
menu is displayed, giving the choice of entering parameter 
values, examining parameter values, running the program 
or terminating the program. When the calculation is 
finished, all values are zeroed (except default parameter), 
and the main menu is redisplayed, giving us the 
opportunity to redo the calculation with a new set of 
parameters or to end execution. Data generated from the 
program were saved in a file which would be imported 
into the graphics software for plotting (Abdu, 2011). 

 
Table 1: Computed Total Cross Section For Electron-

Lutetium Scattering Using Eikonal Approximation And 
Assessed In Comparisons With Born Approximation And 

NIST SRD 64 
E(eV) Approximation Method 

Eikonal Born NIST SRD 64 
1.0 1.793 860.0  
50.0 6.860 230.4 14.612 
100.0 3.132 137.9 10.796 
150.0 2.586 99.02 8.450 
200.0 3.269 77.43 7.053 
250.0 3.760 63.64 6.143 
300.0 3.549 54.00 5.507 
350.0 3.559 46.80 5.038 
400.0 3.632 41.30 4.676 
450.0 3.877 37.13 4.387 
500.0 4.470 34.05 4.151 
550.0 4.900 31.66 3.951 
600.0 4.821 29.56 3.780 
650.0 4.658 27.57 3.631 
700.0 4.559 25.71 3.499 
750.0 4.538 24.02 3.381 
800.0 4.669 22.53 3.274 
850.0 4.826 21.23 3.176 
900.0 4.863 20.09 3.087 
950.0 4.855 19.05 3.004 
1000.0 4.935 18.13 2.928 

Note: The minimum energy for NIST SRD 64 as provided 
by the code is 50.0eV 
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Fig. 2. Graph Of Computed Total Cross Section For 
Electron-Lutetium Scattering Using Eikonal 

Approximation And Assessed In Comparisons With Born 
Approximation And NIST SRD 64 Curves

 

VI. D ISCUSSION 
 
Fig. 1 shows that, the present result and NIST SRD 64 

data is much closer and converges at incidence energy 
above 400 e V, but in comparisms with the Born 
approximation, the total cross section is high at lower 
energy, this indication shows that it valid at higher energy. 
Furthermore, we observed that the curve for Born 
approximation is superior to the other curves. Hence the 
present result is in agreement to NIST SRD 64 and Born 
approximation at higher energies. This is because an 
eikonal approximation is valid at high energi
scattering angles.  

 
VII. C ONCLUSION

 
The total cross section for electron

presented, the eikonal approximation used for this work it 
is in agreement with the result of NIST SRD 64 and Born 
approximation. 
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