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Abstract – It has been known for a long time that any 
infinitely divisible distribution (I.D.D) can be realized on a 
symmetric Fock space with an appropriate noise space. This 
realization led to a kind of correspondence between Lie 
algebras and I.D.D. Namely, each I.D.D (or equivalently Lévy 
process) leads to a such Lie algebra commutation relations. 
In this context, it was shown (see [1]) that the the quantum 
stochastic processes corresponding to the bounded form of 
the oscillator algebra can not cover a large classes of Lévy 
processes, in particular the non standard Meixner classes. 
For this reason, we consider the unbounded form of the 
oscillator algebra called the adapted oscillator algebra. Then, 
we prove that its Fock representation can give rise to the 
infinitely divisible processes such as the Gamma, Pascal and 
the Meixner-Pollaczek. 
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I.  INTRODUCTION  
 

In the quantum probability theory, a quantum stochastic 
process (QSP in the following) associated with a given 

∗–Lie-algebra may cover infinitely classical processes, 
i.e., it has many classical versions or sub-processes. 
Usually, it is not easy to identify these classical processes. 
Despite the principle "algebra implies statistics", the 
initial algebra determines the statistics of such associated 
QSP: Concrete examples have shown such difficulties 
when identifying these versions. The main idea of the 
tomography of QSP is the following:  

Giving a QSP associated with a such ∗–Lie algebra, 
when restricted to self-adjoint abelian sub-algebras, what 
statistical information can be deduced and what is the 
classical structures arising from QSP?   

This idea was supported by the local Kolmogorovian 
aspect of quantum probability theory, i.e., any QSP has a 
fine classical structure. Exactly as in differential geometry, 
every manifold is locally Euclidean (in a topological 

                                                           
*1Special thanks to Qassim University and its Deanship of 
Scientific Research for their moral and financial support to 
accomplish this work. 

sense), where global properties are described by local 
charts. But, here, localization means: restricted to abelian 
sub-algebras. 

Contrarily to the case of the one-mode algebra of the 

square of white noise ( )(2, )sl≡ ℝ , the QSP associated 

with the Fock representation of the one-mode oscillator 
algebra give a rise to only Gaussian and Poisson 
processes. This is still true even in the infinite mode, i.e., 
when taking the test function’s space to be 

2( ) ( )L L∞∩ℝ ℝ (see [1], [2], [6], [12] for more details). 

But in connection with the quantum decomposition of 
classical random variables, the inverse procedure of the 
tomography (see [4]and [5]), the quantum structure (i.e., 
global structure in the sense of the tomography) of 
classical Lévy processes was related to the oscillator 
algebra with a test functions not necessarily in 

2( ) ( )L L∞∩ℝ ℝ . This led us to modify the test 

function space in order to reveal a such classical 
sub-process and highlight statistical information supported 
by them. 

In view of Fock space factorization property, the 
expected sub-processes are of Lévy type, i.e., their 
probability laws are infinitely divisible. Then, the 
classification of the classical copies of the QSP will be 
based on the Lévy exponent. 

This paper is organized as the following: Section 2 is a 
preliminary which can be read diagonally by specialists in 
quantum theory. In this section, we give a detailed 
background on the notion of bosonic Fock space. We also 
recall important notions and results around fundamental 
operators as well as the creation, annihilation and 
conservation operators. Next, we give the Lévy-kinchine 
formula which help us to identify such sub-processes. In 
the third section, we introduce the notion of adapted 
oscillator algebra w.r.t such space of test functions and its 
corresponding QSP. Then, we bring out the involved 
classical sub-processes and we compute theirs 
characteristic exponents. In Section 4, we identify such 
copies via theirs Lévy exponents and we demonstrate that 
many classes of Lévy processes can be sub-processes of 
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the initial quantum one. That is many Lévy processes arise 
from tomography of QSP associated with the oscillator 
algebra. 
 

II.  PRELIMINARIES  
 

2.1. Background on the Fock Space.  
Let 2 ( , )L dx=

ℂ
ℝH be the complex Hilbert space of the 

ℂ – valued, square integrable functions on R with scalar 

product, denoted by .,.,  which is linear in the second 

variable. 
We denote 

 
the n-fold symmetric tensor product of H , when for n=0, 

it is identified to the one dimensional space :=ℂH Φ , 
where Φ  is a unital vector and one calls it vacuum vector. 
The symmetric or bosonic Fock space over H is defined 
by  

0
( ) : on

n

+∞

=
Γ = ⊕H H  

 

(1) 

An elementf of ( )sΓ H  is a sequence 0( )n nf f ≥= with 
on

nf ∈H  and also we write
0

.n
n

f f
≥

=∑  The scalar 

product, on ( )sΓ H , and the associated norm are given by 

0 0
0

, , , ( ) , ( ) ( )n n n n n n s
n

f g f g f f g g≥ ≥
≥

= = = ∈ Γ∑ H  

and  
2 2

0
0

, ( ) ( )n n s
n

f f f f ≥
≥

= = ∈ Γ∑ H  

We define fψ , the exponential (coherent) vector in 

( )sΓ H  associated withf ∈H  by  

0
0

: ,
!

on

f
n

f

n≥

= =∑ψ ψ Φ  

The set of exponential vectors { },f f ∈Hψ is total and 

linearly independent in ( )sΓ H . Moreover, we have  

,, , ,f g
f g e f g= ∀ ∈H�ψ ψ  

Denoting ε , the subspace of ( )sΓ H , generated by the 

set of the exponential vectors. Then the bosonic creation 
and annihilation operators are densely defined on the Fock 

space ( )sΓ H , by their actions onε as follows:  

0

( ) : , ; ( ) :f f f f
s

d
A f A s

ds
ϕ ϕ ϕ ϕ+

=

= = +ψ ψ ψ ψ  

Notice that ( )A ϕ+ is linear in ϕ , but ( )A ϕ−  is 

anti-linear.  
It is well-known (see [9] and [8]) that the operators 

( )A ϕ+  and ( )A ϕ− are closable (they have a densely 

defined adjoint). We extend them by closure, while 

keeping the same notations ( )A ϕ+ , ( )A ϕ− , they are 

mutually adjoint. Moreover, they satisfy the canonical 
commutations relations (CCR):  

( ), ( ) , 1,A Aϕ φ ϕ φ− +  =   (2) 

( ), ( ) ( ), ( ) 0,A A A Aϕ φ ϕ φ− − + +   = =     (3) 

for any ,φ ϕ ∈H , where[ ], :x y xy yx= −  is the commutator 

and 1 is the identity operator on ( )sΓ H . 

Given an unitary operatorU of H , it is possible to rise, 
in a natural way, this operator into unitary operator, 

( )UΓ of ( )sΓ H  by putting 
1

( ) : ,
n

k
U U

=
Γ = ⊗ when restricted 

to on
H� for 1n ≥ , and equals to identity, on0H . This 

operator ( )UΓ is called the second quantized of U and it 

is easy to check that  

( *) ( ) ( ) *UV U VΓ = Γ Γ  

If :φ →ℝ ℝ is a real valued function, then the 

associated multiplication operatorMφ (which is not 

necessarily bounded) is self-adjoint. The differential 

second quantized ( )φΛ (or the conservation operator) of 

the self-adjoint operator Mφ of H is defined via the Stone 

theorem (see [10]) by  

( ) ( ): ,itM ite e tφ φΛΓ = ∈ℝ  

When :φ →ℝ ℂ is a complex valued function, we 

decompose it as a complex sum of two real valued 

functions 1 2iφ φ φ= + . We define its conservation operator 

by  

1 2( ) : ( ) ( )iφ φ φΛ = Λ + Λ  

Hence ( )φΛ is linear inφ .  

The second quantized operator of U acts onε by  

( ) :fU UfΓ =ψ ψ  

It follows that  

0

( ) ( )sf fe f
s

d
A f

ds
φϕ φ+

=

Λ = =ψ ψ ψ  

It is well-known that the operators ( )A ϕε
+

 and ( )A ϕε
−

 
forϕ ∈H�, are well-defined on the set of the exponential 

vectors E by their series. Moreover, they act on this set as 
follows:  

,( ) ( ); ,fA A
f f f fe e e fϕϕ ϕ

ϕ
+ −

+= = ∈Hψ ψ ψ ψ  

The following canonical commutation relations hold 
weakly on the set of the exponential vectors  

[ ]
[ ]1 2

( ), ( ) ( ); ( ), ( ) ( );

( ), ( ) 0

A A A Aφ ϕ φϕ φ ϕ φϕ

φ φ

+ + Λ = Λ = − 

Λ Λ =
 



 
 
 

Copyright © 2015 IJISM, All right reserved 
247 

International Journal of Innovation in Science and Mathematics 
Volume 3, Issue 5, ISSN (Online): 2347–9051 

 

2.2  Lévy Processes and Infinitely Divisible Laws  
It is known (see [11] and [7]), that any infinitely 

divisible probability measure µ on ℝ is canonically 

associated with a triple ( ), ,α σ β such that: 

– α is a real constant  
– β is a positive finite measure on ℝwith  

 ( )2 {0}σ β=  

– denotingµ̂ the Fourier transform of µ andΨ , the 

function 
2

2
2\{0}

( ) 1 ( );
2 1

ixt ixt
x i x x e dt

t

σ  = − + − − + 
∫ℝΨ α ν x∈ℝ ,        

(4) 
where  

2

2

1
( ) ( ), \ {0}

t
dt d t t

t
β+= ∈ℝν  

(5) 

one has  
( )ˆ ( ) : ;xx eµ = Ψ  x∈ℝ  (6) 

Conversely, given any such a triple( ), ,α σ β , there 

exists an infinitely divisible probability measure on R 
whose has the form (6) withΨ given by (4). 

The functionΨ is called the Lévy–Khintchine function, 
or the characteristic exponent, of µ and the triple 

( ), ,α σ β  is called a generating triple for the measure µ . 

Finally, the measureν on { }\ 0ℝ is called the Lévy 

measure of µ . 

 

III.  CLASSICAL STOCHASTIC PROCESSES 

THROUGH THE OSCILLATOR ALGEBRA  
 
Definition 1:  The infinite dimensional oscillator algebra 

over 2 ( )L=
ℂ
ℝH  is the complex ∗–Lie algebra ( )osc ℝL  

with linearly independent generators  

{ }2( ), ( ), ( ),1: , , ( ) ( )A A L Lφ ϕ φ ϕ+ − ∞Λ ∈ ∩ℝ ℝψ ψ  

and relations  

( ), ( ) , 1,A Aϕ φ ϕ φ− +  =   (7) 

( ), ( ) ( ),A Aφ ϕ ϕ ϕ± ± ± Λ = ±   (8) 

[ ]( ), ( ) ( ), ( ) 0,A Aϕ φ ϕ φ± ±  = Λ Λ =   (9) 

( ) *( ) ( ), *( ) ( ),A Aϕ ϕ φ φ− += Λ = Λ  (10) 

where 1 is the identity operator onHwith the notation  

             ;φ φ φ φ+ −= =  

The maps ( ), ( )Aφ φ φ+ Λ֏ are linear in φ while  

( )Aφ φ−
֏ is anti-linear.  

The fundamental quantum stochastic processes 
associated with the oscillator algebra are given by the 
following relations:  

[0, ] [0, ]( ) ( ); ( ) ( )t t t tA Aφ φ φ φ± ±= ⊗ Λ = Λ ⊗χ χ  

Recall that these stochastic processes act on the Hilbert 
space  

( )( ) ( )( )2 2[0, ], [0, ]L t L tΓ = Γ ⊗H H  

The more general quantum process associated to 

( )osc ℝL  is given by the complex linear combination  

1 2( ) ( ) ( ) 1t t t tX A A tϕ ϕ φ λ+ −= + + Λ + , 

where 2
1 2, , ( ) ( )L Lϕ ϕ φ ∞∈ ∩ℝ ℝ and λ ∈ℂ . 

Denote by C , the family of classical stochastic 

processes associated with the algebra ( )osc ℝL  (i.e., 

sub-processes oftX ). It was shown (see [1]) that C can 

not recover a large class of infinitely divisible processes. 
At least, the three non standard Meixner classes (Gamma, 
Pascal and Meixner-Pollaczek ) are not inC . This 
abstraction is due to the fact that the test functions in the 

argument of A±  are bounded (see Def 1). Our aim is to 
adapt the oscillator algebra in order to include a large class 
of infinitely divisible processes. For this goal, we shall 
extend the test function space at the level of the argument 
of the conservation operator. 

Definition 2. LetMbe a space of test functions →ℝ ℂ , 
closed under complex conjugation and let S be the 
sub-space of H given by 

{ }1 1: ; ...... ,......, , 1n n nϕ φ φ ϕ φ φ= ∈ ∈ ∀ ∈ ≥S H H M

 The adapted oscillator algebra ' ( )osc ℝL  w.r.t the space 

M is the complex ∗–Lie algebra generated by the set  

{ }1 2( ), ( ), ( ),1; , , 1,2iA A iϕ ϕ φ ϕ φ+ − Λ ∈ ∈ =S M  

with relations given as in equations from (7) to (10).  

Remark 3  
1. Unlike the definition (1), the test functions appearing in 
the definition (2) are not necessarily bounded. Then, 

if ( )L∞≠ ℝM , the multiplication operators φM are not 

bounded for allφ ∈M . For this, ' ( )osc ℝL  can be 

considered as the unbounded form of the oscillator 
algebra. The transition to the unbounded form will give as 
more degree of freedom at the level of test functions in 
order to recover a large class of infinitely divisible 
distributions. 
2. From the definition of S , clearly that (8) make sense. 
3. In the definition of S, the condition  

( )1 1; ...... ,......,n nϕ φ φ ϕ φ φ∈ ∈ ∀ ∈H H M  

can be rephrased (with help of the polarization formula) as 
follows:  

n nφ ϕ φ∈ ∀ ∈ ∀ ∈ℕH M  (11) 
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4. The constraint that M is closed under complex 
conjugation was given to guarantee the meaning of 
relation (10).  

5. Note that a such paire ( ),S M  exists, in fact we can 

take ( )L∞=
ℂ
ℝM , then =S H . But it was shown in the 

paper [1] that this choice can not give a rise to Lévy 
process such the Meixner class. For this reason, S must 
be a proper sub-space of H .  

Using Equations from (7) to (10), one easily deduces 

that the quantum stochastic processes,t tA A+ − and tΛ  obey 

the following relations:  

1 2 1 2 0( ), ( ) , 1 ,t tA A tϕ ϕ ϕ ϕ− +  =   (12) 

( ), ( ) ( ),t t tA Aφ ϕ ϕ ϕ± ± ± Λ = ±   (13) 

1 2( ), ( ) 0t tA Aϕ ϕ± ±  =   (14) 

[ ]1 2( ), ( ) 0,t tφ φΛ Λ =  (15) 

*( ) *( ) ( ); ( )( ) ( )t t t tA A Aϕ ϕ φ φ− += = Λ  (16) 

for all , iϕ ϕ ∈S and , , 1,2.i iφ φ ∈ =M  

3.1 Abelian sub-algebras of ' ( )osc ℝL  and 
associated classical processes  

One of the basic tenet of quantum probability is that: If 

( )t t I
X

∈
 is a family of operators acting on the same Fock 

space (H)L with vacuum vector Ω and ( )t
t J

X
∈

ɶ is a 

self-adjoint abelian sub-family of( )t t I
X

∈
, then, under 

additional analytical conditions which are automatically 
satisfied in the case we are considering, there exists a 

classical stochastic process ( )t t J
Y

∈
 on a some probability 

space( , , )PE H such that, for all bounded complex valued 

Borel functions 1 2, ,......., ,n nϕ ϕ ϕ ∈ℕ one has  

( )
1 2 1 21 2 1 2( ) ( )... ( ) , ( ) ( )... ( )

n nt t n t t t n tY Y Y X X Xϕ ϕ ϕ ϕ ϕ ϕ= ɶ ɶ ɶE Ω Ω

In particular, the characteristic function of ( )t t J
Y

∈
is given 

by  

( ) ,t tizY izXe e= ɶ

E Ω Ω  

In such case, we say that tX is a classical sub-process of 

tX  (or a classical version oftX ). 

We apply the above general statement to the case in 
which the process  

( ) ( ) ( ) 1, 0,t t t tX A A t tφ ϕ λ+ −= + + Λ + ≥ψ  

acts on the noise space 2( ( ,H)).L +Γ ℝ Then such 

sub-process( )
0t t

X
≥

ɶ , with respect to the vacuum vector, 

can be identified to an independent increment operator 
process and its characteristic function is given by  

 ( )( ) : ,tizX i t ze e=ɶ

E
Ψ  

where, in obvious notations, is the cummulant 

function tXɶ . 

For the existence of the classical sub-processes oftX , 

we shall find the abelian self-adjoint (AS) sub-algebras of 

the adapted oscillator algebra' ( )osc ℝL . 

Proposition 4  
Let ' ( )osc ℝL  be an adapted oscillator algebra as in Def 

2. Then the abelian self-adjoint sub–algebras take either 
the form  

{ }: ( ) ( ) 1; ,G Lie A Aϕ ϕ λ ϕ λ+ −= + + ∈ ∈ℝL K  (17) 

whereK is any real sub-space of H , or the form  

{ }: ( ) ( ) ( ) 1; ,ID Lie A Aξ
ξξφ ξφ φ λ φ λ+ −= + + Λ + ∈ ∈ℝL K  

(18) 
whereξ is a fixed complex valued function and  

2

1

: ( , ( ))n

n

L dxξ ξη
≥

=
ℂ
ℝ∩K   

(19) 
with  

 
2

( ) ( )dx x dxξη ξ=  

Remark 5  
1. Note that there are many adapted oscillator algebras 
and this depends on the choice of test function’s space 
M . Consequently the forms of their sub-algebras also 
depends on this choice.  

2. For the first form (17), we can choose ( )L∞=
ℂ
ℝM� , 

then ⊂ =K S H .  

3. For the second form (18), there is many choices of ξ  

which implies the variety of choice of M . For example 

the choice ξ=M K is convenable which implies that S  

contains the sub-space ξξK .  

4. Note that the condition ξφ ∈K  is equivalent to  

2 ( ) 1.n L nφ ξ ∈ = ∀ ≥
ℂ
ℝ H  (20) 

(of Proposition 4). 
Let us consider the more general form of elements of 

' ( )osc ℝL  as:  

2

( , , , ) ( ) ( ) ( ) 1,

( , , , ) .

X A Aϕ φ λ ϕ φ λ
ϕ φ λ

+ −= + + Λ +

∈ × ×ℂS M

ψ ψ

ψ
 

Then, ( , , , )X ψ ϕ φ λ is self-adjoint, if and only if,  

( ) ( ) ( ) 1 ( ) ( ) ( ) 1.A A A Aϕ φ λ ϕ φ λ+ − − ++ + Λ + = + + Λ +ψ ψ  

This gives , ( ) 0ϕ φ= =Fψ and λ ∈ℝ . 

We denote this self-adjoint element by  

( , , ) ( ) ( ) ( ) 1X A Aϕ φ λ ϕ ϕ φ λ+ += + + Λ +  

whereλ ∈ℝ andφ  is a real valued function in M . 
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Clearly ( , , )X ϕ φ λ belong to an abelian sub-algebra of 

' ( )osc ℝL ,  if and only if,  

[ ]( , , ), ( ', ', ') 0X Xϕ φ λ ϕ φ λ =  

 , ' , , ' , ,φ ϕφ φ ϕ ϕ λ λ∀ ∈ ∈ ∈ℝM S  

where φ ⊂M M and ϕ ⊂S S are two subspaces ofM and 

S respectively. 
On the other hand, using equations from (7) to (9) and 

the fact that φ  and 'φ are real valued functions, one has  

[ ]( , , ), ( ', ', ')X Xϕ φ λ ϕ φ λ =  

( )2 , ' 1 ( ' ' ) ( ' ' ),i A Aϕ ϕ φϕ φ ϕ φϕ φ ϕ+ −+ − − −J  

which gives  

( ), ' 0 , ' ϕϕ ϕ ϕ ϕ= ∀ ∈J S   
(21) 

and  

' ' , ' , , ' .φ ϕϕφ φϕ φ φ ϕ ϕ= ∀ ∈ ∈M S  (22) 

Note that from Eq.(21), we deduce that the space ϕS has 

a real structure (i.e., the inner product is real valued in the 

sense that , ' , ' ϕϕ ϕ ϕ ϕ∈ ∀ ∈ℝ S ).  

From Eq. (22), we distinguish two cases: 
Case. I: ' 0φ φ= =  

In this case, Eq.(22) becomes trivial. Hence AS-algebra 
is generated by the elements of the form  

( , ) ( ) ( ) 1, , .X A Aϕ λ ϕ ϕ λ ϕ λ+ += + + ∈ ∈ℝK  

where we have denoted the real sub-space ϕS by K . 

Case. II: 0, ' 0φ φ≠ ≠  

Eq.(22) gives  

'
, ' , ' .

' φ ϕ
ϕ ϕ φ φ ϕ ϕ
φ φ

= ∀ ∈ ∀ ∈M S  

Then 
ϕ
φ

is a constant function. Consequently, there 

exists a function :ξ →ℝ ℂ such that  
2 ( )Lϕ ξφ= ∈
ℂ
ℝ  

In this case, Eq.(21) is automatically satisfied and 
AS-algebra is generated by the elements of the form  

( , ) ( ) ( ) ( ) 1, , .t t tX A Aξ φφ λ ξφ ξφ φ λ φ λ+ −= + + Λ + ∈ ∈ℝM  

Finally, according to the condition (11), we deduce that  
1 ,n n nφ ϕ φ ξ+= ∈ ∀ ∈ℕH    

which is equivalent to  

1.n nφ ξ ∈ ∀ ≥H    

This gives  
2 2

( ) ( ) 1.
n n

nx x dxφ ξ < +∞ ∀ ≥∫ℝ  

or equivalently 2 ( ) 1.n
nL ξφ η∈ ∀ ≥

ℝ
 

Finally ξφ ∈K given as in (19). 

Corollary 6:  The classical sub-processes associated with 

the adapted oscillator algebra ' ( )osc ℝL  take either the 

form  

( , ) ( ) ( ) 1t t t tX X A A tϕ λ ϕ ϕ λ+ −= = + +ɶ  (23) 

or  

( , ) ( ) ( ) ( ) 1t t t t tX X A A tξ φ λ ξφ ξφ φ λ+ −= = + + Λ +ɶ  (24) 

where the test functions are given as in Proposition (4) and 
λ ∈ℝ .  

3.2 Characteristic Functions of the Classical 
Sub-Processes 

In this subsection, we investigate to identify these 
classical processes by computing their characteristic 
functions in the vacuum state. For this, we need the 
following lemma. 

Lemma 7 ( See [3])  
Let H  be a separable Hilbert space andsΓ H be the 

bosonic Fock space over H . Let T be a self-adjoint 

densely defined linear operator on H . Define the 

functions 1 2,e e by  

1 2 2

1 1
( ) : ; ( ) : ,

x xe e x
e x e x x

x x

− − −= = ∈ℂ  

Let us consider the operators1( )e iT and of 

2 ( )e iT defined via the spectral theorem. Then for all 

u∈H  belonging to the domain of 1( )e iT and of 2 ( )e iT , 

the following identity holds on the domain of the 
exponential vectors:  

( ) 1 2
( ) ( ) ( ) ( ) ( )( )i A u A u T A u A ui Te e e e eγ

+ − + −+ +Λ Λ=   (25) 

where  

1 1 2 1 2( ) ; ( ) ; , ( )u ie iT u u ie iT u u e iT uγ= = − − = −  (26) 

Proposition 8:  The classical sub-processestXɶ given by 

(23) is a gaussian process with characteristic exponent  
2

2
( )

2

z
z izλ ϕ= −Ψ . 

Proof.  Since  

( , ) ( ) ( ) 1t t t tX X A A tφ λ ϕ ϕ λ+ −= = + +ɶ  

Then  

( )

[0 , ] [0, ]

[0 , ] [0, ]

( ( ) ( ) 1)

( ( ) ( ( )) 1)

( ) ( ( ))

t t t

t t

t t

izX iz A A t

i A z A z zt

i A z A z izt

e e

e

e e

ϕ ϕ λ

ϕ ϕ λ

ϕ ϕ λ

+ −

+ −

+ −

+ +

⊗ + ⊗ +

⊗ + ⊗

=

=

=

ɶ

χ χ

χ χ

 

Setting [0, ] , 0.tu z Tϕ= ⊗ =χ It is clear that all conditions 

in Lemma (7) are satisfied. Then, one obtains  

1 1 2 1(0) , (0)u ie u iu u ie u iu= = = − = −  

and  



 
 
 

Copyright © 2015 IJISM, All right reserved 
250 

International Journal of Innovation in Science and Mathematics 
Volume 3, Issue 5, ISSN (Online): 2347–9051 

 

2

[0, ] [0, ]

[0, ] [0, ]

2
2

, (0)

1
( ), ( )

2

1
, ,

2

.
2

t t

t t

u e u

z z

z z

z
t

γ

ϕ ϕ

ϕ ϕ

ϕ

= −

= − ⊗ ⊗

= −

= −

χ χ

χ χ
 

Then  

( ) (0) ( )

( ) ( )

λ λ

λ λ

+ −

+ −

Λ − +

− +

=

=

ɶ
tizX A iu i A iu it

A iu A iu it

e e e e e

e e e
 

This gives  

2
2

( ) ( )

( ) ( )

2

2

( )

( ) ,

,

,

,

t tizX izX

A i u A iu it

it A iu A i u

it

it

z
t iz

t z

e e

e e e

e e e

e

e

e

e

γ λ

γ λ

γ λ

γ λ

λ ϕ

+ −

− −

− +

+ −

+

+

 
−  

 

=

=

=

=

=

=
=

ɶ ɶ

E

Ψ

Ω Ω

Ω Ω

Ω Ω

Ω
 

where  
2

2
( )

2

z
z izλ ϕ= −Ψ . 

This completes the proof.   

Proposition 9:  Let tX be the classical sub-process given 

by (25). Then its characteristic function is given by  
( )( ) ,tizX t ze e=ɶ

E
Ψ  (27) 

where  

( )
2

( )
( ) 1 ( ),

1 ( )
iz x iz x

z iz e dx
x

φ
ξ

φ η
φ

 
= + − − + 

∫ℝΨ α  (28) 

with  
3

2

( )
( )

1 ( ) ξ
φα λ η

φ
= −

+∫ℝ
x

dx
x

 
 

(29) 

Proof.  We will prove Proposition (9) in two steps:  
Step.1. Since  

( , ) ( ) ( ) ( ) 1ξ φ λ ξφ ξφ φ λ+ −= = + + Λ +ɶ
t t t t tX X A A t  

Then  

( )
( ( ) ( ) ( ))

( ) ( ) ( ) 1

,ξφ λ

ξφ ξφ φ λ
+ −

+ −

+ +Λ

= + + Λ +

=

ɶ
tizX iz

t t t

i A u A T izt

e e A A t

e e
 

where  

[0, ] ( )tu zξφ= ⊗χ  and 
[ 0, ] ( ) [0, ] ( )

t z tT M zφ φ⊗= ≡ ⊗
χ

χ  

Cleary all conditions in Lemma (7) are satisfied. Then 
we obtain  

( )
1 2( ) ( ) γ λ+ −Λ + +=ɶ

tizX A i T A ize e u e e u e  

Note that it is not necessary to explicit 1u and 2u . In 

fact, we have  

1 2

1 2

( ) ( )( )

( ) ( )( )

( )

( ) ,

,

,

,

,

. (30)

t tizX izX

A u A ui T izt

A u A uizt i T

izt i T

izt

izt

e e

e e e e

e e e e

e e

e

e
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Λ +

+ Λ

+ Λ

+

+

=

=

=

=

=

=

ɶ ɶ

E Ω Ω

Ω Ω

Ω Ω

Ω Ω

Ω Ω

 

Now, it is sufficiently to expressγ . 

Since  

( )2 2 [0, ] [0, ] 2( ) ( ) ( ).t te iT e iz e izφ φ= ⊗ = ⊗χ χ  

Then from Equation (26), we get  

( )
2

[0, ] [0, ] 2 [0, ]

[0, ] [0, ] 2

( )

2

2( )

( )

, ( )

( ), ( ) ( )

, , ( )

( ) 1
( ) ( ) ( ) ( )

( ( ))

( ( ) 1) ( )

( ( ) 1) ( ).

t t t

t t

iz x

iz x

iz x

u e iT u

z e iz z

z e iz z

e iz x
t z x x z x x dx

iz x

t e iz x x dx

t e iz x dx

φ

φ

φ
ξ

γ

ξφ φ ξφ

ξφ φ ξφ

φξ φ ξ φ
φ

φ ξ

φ η

= −

= − ⊗ ⊗ ⊗

= −

− −= −

= − −

= − −

∫

∫

∫

ℝ

ℝ

ℝ

χ χ χ

χ χ

 

Finally , Equation (30) gives  

( )( )( ) ( ) 1 ( ) ( )( ) ,
iz x

t
t iz e iz x dxizX t ze e e

φ
ξλ φ η+ − −∫= =ℝ

ɶ

E
Ψ

 

where ( )zΨ is given by  

( )( )( ) ( ) 1 ( ).iz xz iz e iz x dxφ
ξλ φ η= + − −∫ℝΨ  (31) 

Step.2. Using (31), we obtain  

( )
2 2

( ) ( )
( ) 1 ( ) ( )

1 ( ) 1 ( )
iz x iz x iz x

x iz e iz x dx
x x

φ
ξ

φ φλ φ η
φ φ

 
= + − − − + + + 

∫ℝΨ

( )
2

2

( )
2

2

3

2

( )
1 ( )

1 ( )

( )
( ) ( )

1 ( )

( )
1 ( )

1 ( )

( )
( ) ( )

1 ( )

( )
( )
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iz x

iz x

iz x
iz e dx

x

iz x
iz x dx

x

iz x
e dx

x

x
iz x dx

x

x
iz dx

x

φ
ξ

ξ

φ
ξ

ξ

ξ

φλ η
φ

φφ η
φ

φ η
φ

φλ φ η
φ

φλ η
φ
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+ − + + 
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∫

∫

∫

∫
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( )
2

( )
2

( )
1 ( )

1 ( )

( )
1 ( ).

1 ( )

iz x

iz x

iz x
e dx

x

iz x
iz e dx

x

φ
ξ

φ
ξ

φ η
φ

φ η
φ

 
+ − − + 

 
= + − − + 

∫

∫

ℝ

ℝ
α

 

Note that the condition (20) guaranties the existence of the 
integral in the equation (29). In fact we have  

3 3
2

2 2

2

( ) ( )
( ) ( ) ( )

1 ( ) 1 ( )

( ) ( )

ξ
φ φη ξ

φ φ

ξ φ

=
+ +

≤ < + ∞

∫ ∫

∫

ℝ ℝ

ℝ

x x
dx x dx

x x

x x dx

 

IV.  IDENTIFICATION OF THE CLASSICAL 

STOCHASTIC PROCESSES ( , )tX ξ φ λ  
 

In this section, we will show that how the characteristic 
exponentΨ in (28) can recover a large class of Lévy 
processes. In fact, it is sufficient to consider only two 
classes of Lévy exponent which are fundamental. 

As expected, in view of Equation (28), the characteristic 
exponentΨ looks like the Lévy exponent, appearing in the 
Lévy–Khintchine formula (4). Thus, if there exists a paire 

( ),φ ξ  satisfying 

( )ξφ η = v  (32) 

one can use the measure-image theorem, to obtain the new 
expression ofΨ as follows:  

2\{0}
( ) 1 ( ),

1
izu izu

z iz e du
u

 = + − − + 
∫ℝΨ α ν  

 
(33) 

which corresponds to the Lévy characteristic exponent. 

We will discuss the choice of ( ),φ ξ under condition (32), 

(i.e., giving (33)) where ξφ ∈K , then we will illustrate our 

result by a simple examples. 

Recall that the condition ξφ ∈K is equivalent to (20) 

which becomes as follows:  
2 ( ) 1nx dx n< +∞ ∀ ≥∫ℝ ν  (34) 

This implies that, only Lévy measures having finite 
moments of order pair will be considered in our study. 
On the other hand, sinceν is a Lévy measure, then it 
satisfies  

( )2min 1, ( )x dx < +∞∫ℝ ν  (35) 

But this condition is automatically satisfied. In fact  

( )2 2

1 1

2 2

1 1

2

min 1, ( ) ( ) ( )

( ) ( )

( ),

x x

x x

x dx x dx dx

x dx x dx

x dx

≤ ≥

≤ ≥

= +

≤ +

=

∫ ∫ ∫

∫ ∫

∫

ℝ

ℝ

ν ν ν

ν ν

ν

 

which is finite from (34). 
In the following, we consider two classes of Lévy 

exponent.  

Class I. Characteristic exponents with a positive discrete 

Lévy measure having a support, 1 2 3( ) { , , ,....}Supp a a a=ν  

and satisfying (34), i.e., its Lévy measure is given by  

1

( ) ( ), 0,
kk a k k

k

dx dx aδ
≥

= > ∈∑ ℝν α α  (36) 

with  
2

1

1n
k k

k

a n
≥

< + ∞ ∀ ≥∑α  (37) 

Class II.  Characteristic exponents with a positive 
continuous Lévy measure having a support, the 

interval ( , )a b , i.e., its Lévy measure is expressed as 

follows:  

( , )( ) ( ) ( ), , ( ) 0 ( , )a bdx f x x a b f x x a b= −∞ ≤ < ≤ +∞ > ∀ ∈ν χ

 (38) 
with  

2 ( ) 1< + ∞ ∀ ≥∫
b n

a
x f x dx n   

(39) 

Theorem 10:  Let ν be the Lévy measure given as in 
(36). Then, the functionsξ andφ given by  

[ , 1[ [ , 1[
1 1

( ) ( ) ; ( ) ( )k k k k k k
k k

x x x a xξ α φ
∞

+ +
≥ ≥

= =∑ ∑χ χ   (40) 

satisfy (32). In this case, the classical stochastic process 

( , )tX ξ φ λ has the characteristic exponent (33) 

corresponding to Class I.  

Proof. To prove (32) for ( , )ξ φ given by (40), it is 

sufficient to prove  

( )( ) ( ) ( ) ( )g x dx g y dyξφ η =∫ ∫ℝ ℝ
ν  

for all positive borel function g. 

Since ( ) [ , 1[
1

( ) ( ) ( )k k k
k

g x g a xφ +
≥

=∑ χ . Then  

( )
1

1 2

1

2
1

[ , 1[
1 1

1

[ , 1[
1 1

1

[ , 1[
1 1

1

( ) ( ) ( ) ([ , 1[)

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) .

k
k

k

k k
k

k

k j j jk
k j

k

k j j jk
k j

k

k j j jk
k j

k k
k

g x dx g a k k

g a x dx

g a x dx

g a x dx

g a x dx

g a

ξ ξφ η η

ξ
≥

+

≥

+

+
≥ ≥

+

+
≥ ≥

+

+
≥ ≥

≥

= +

=

 
=  

 

 
=  

 

 
=  

 

=

∑∫

∑ ∫

∑ ∑∫

∑ ∑∫

∑ ∑ ∫

∑

ℝ

α χ

α χ

α χ

α

 

On the other hand  

1

1

( ) ( ) ( ) ( )

( )

kk a
k

k k
k

g y dy g x dx

g a

δ
≥

≥

 =  
 

=

∑∫ ∫

∑

ℝ ℝ
ν α

α

 

which completes the proof. 
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Note thatφ belongs to the spaceξK . In fact condition 

(37) implies (34) which is equivalent to 20). 

Example 11 (The Negative binomial process). 
The Lévy measure of the negative binomial process, 

with parameters 0c > and 0 1p< < is the measure defined 

on *ℕ  by  

1

(1 )
( ) ( )

k

k
k

c p
dx dx

k
δ

+∞

=

−=∑ν  

In this case  

2
[ , 1[

1

( ) (1 ) ( )
k

k k
k

c
x p x

k
ξ

+∞

+
=

= −∑ χ  

and  

[ , 1[
1

(1 )
( ) ( )

k

k k
k

c p
x x

k
φ

+∞

+
=

−=∑ χ  

Theorem 12:  Letν be the Lévy measure given in (38). 
If the function ξ is chosen such thatφ satisfies, the 

differential equation  
2

( )
' ( ) :

( ) ξ

ξ
ξ= ∀ ∈ =

x
y x Supp I

f y
 

 
(41) 

and ( ) ( , )I a bξφ = , then the paire ( , )ξ φ satisfies (32). In 

this case, the classical stochastic processes( , )ξ φ λtX have 

the characteristic exponent corresponding to the Class II. 

Proof.: To prove (32) for ( , )ξ φ given by (41), it is 

sufficient to prove  

( )( ) ( ) ( ) ( )g x dx g y dyξφ η =∫ ∫ℝ ℝ
ν  

for all positive borel function g. 
Without difficulty, using the change of variable 

( )( )u xφ= , we get  

( ) ( )

( ) ( )

2

( )

( , )

( ) ( ) ( ) ( )

( ) '( ) ( )

( ) ( )

( ) ( )

( ) ( )

I

I

I

a b

g x dx g x x dx

g x x f x dx

g u f u du

g u f u du

g u du

ξ

ξ

ξ

ξ

φ

φ η φ ξ

φ φ φ

=

=

=

=

=

∫ ∫

∫

∫

∫

∫

ℝ

ℝ
ν

 

where we have used ( ) ( , )I a bξφ = . 

Note that φ  belongs to the spaceξK . In fact condition 

(39) implies (34) which is equivalent to (20). 

Example 13 (The Gamma process). 
It is well-known (see [7]) that the Lévy measure of the 

Gamma Process of order p, is given by  

 [0, [( ) ( )
pxe

dx x dx
x

−

+∞=ν χ  

which implies that ( ) and ( , ) ]0, [.
pxe

f x a b
x

−

= = +∞   

We will choose a function ξ such that φ obeys the 

differential equation (41) with condition ( ) ]0, [.Iξφ = +∞  

In our case, the differential equation (41) will be expressed 
as follows:  

2
' ( ) ,pyy ye x x Iξξ= ∈  (42) 

Let us fixing a function ξ and assuming that it satisfies 

2 2

0
( ) ; lim ( ) 0

xx
t dt t dtξ ξ

+∞ +∞

→+∞
= +∞ =∫ ∫  

Note that a such ξ exists. As example, we can choose  

1
, 0;

( )
0, 0.

t
t t

t

ξ
 ≥= 
 ≤

 

 
(43) 

 

To find a such solution of the differential equation (42), 

let us introduce the functions pF given by  

1( ) ( ), 0,pF x E px x= − >  

where  

1( ) , 0,
t

x

e
E x dt x

t

−+∞
= >∫  

is the exponential integral function. We take the 
function given as follows:  

2

( ) ( ) 0.
x

x t dt xξ ξ
+∞

= − >∫ω  

Consequently, the functionφ defined by  
1( ) ( ( )), 0px F x xξφ −= >ω  

is a solution of the differential equation (42). In fact, we 
have  

1' ( ) ' ( )

.

p

px

px

F x pE px

e
p

px

e

x

−

−

= −

−= −

=

 

Then  

( )

( )

1

( )

( )

2( )

1
'( ) ' ( )

' ( ( ))

1
' ( )

' ( )

( )
' ( )

' ( ) ( )

( ) ( ) ,

p p

p

p x

p x

p x

x x
F F x

x
F x

x
x

e

x x e

x e x

ξ
ξ

ξ

ξ φ

φ
ξ

φ

φ

φ
φ

φ

φ ξ

−

−

=

=

=

=

=

ω
ω

ω

ω

ω

 

where we have used 
2

' ( ) ( )w x xξ ξ= . 

On the other hand , we have  
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( )
( )( )

( )

1

1

( ) ]0, [

]0, [

]0, [

]0, [ ,

p

p

I

F w

F

ξ

ξ

φ φ
−

−

= +∞

= +∞

= +∞

= + ∞

 

which gives that the paire ( , )ξ φ  satisfies ( ) ( , )I a bξφ = . 

Example 14 (The Meixner process) 
The Lévy measure of the Meixner process 

( ), ,M α β δ is given by  

( ) , , 0,

bx

pe
dx p b

x
xsh

p

δ δ π π
π

= > − < <
 
 
 

ν  

Then, with the same assumptions as in the Gamma case, 
we easily verify that the corresponding function φ  

satisfies the differential equation  
2

( )
'

2

b b
y y

p p
x

y y e e
π πξ

δ

− +− 
= − 

 
 
�  

 
(44) 

Taking 1 2φ φ φ= + , where 1φ satisfies  
2

( )
'

2

b
y

p
x

y y e
πξ

δ

−

=  

and 2φ satisfies:  
2

( )
'

2

b
y

p
x

y y e
πξ

δ

+−
= −  

Then φ  can be expressed as follows:  

( ) ( )
1 1 2 2

1 1
] ,0[ ]0, 0[( ) ( ) ( ) ,p px F x F xξ ξφ − −
−∞ +∞= − −ω χ ω χ  

where  

1 2; ,
b b

p p
p p

π π− += =  

and  

1 2

( ) ( )
( ) ; ( )

2 2

x x
x x

ξ ξξ ξ
σ σ

−= =  

Finally,φ  is a solution of the differential equation (44). 

 
V. CONCLUSION  

 
Despite the role of the commutation relations, the space 

of the test functions has played an important role in the 
determination of the classical processes corresponding to 
the oscillator algebra. In fact, the transition from bounded 
to unbounded form of the oscillator algebra gave us more 
degree of freedom. This led us to recover more classes of 
Lévy processes. 
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