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Abstract — It has been known for a long time that any
infinitely divisible distribution (I.D.D) can be realized on a
symmetric Fock space with an appropriate noise spac This
realization led to a kind of correspondence betweerlie
algebras and 1.D.D. Namely, each I.D.D (or equivaidly Lévy
process) leads to a such Lie algebra commutation legions.
In this context, it was shown (see [1]) that the #h quantum
stochastic processes corresponding to the boundedrin of
the oscillator algebra can not cover a large classeof Lévy
processes, in particular the non standard Meixner lasses.
For this reason, we consider the unbounded form othe
oscillator algebra calledthe adapted oscillator algebrarhen,
we prove that its Fock representation can give ris¢o the
infinitely divisible processes such as the Gamma,aBcal and
the Meixner-Pollaczek.
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sense), where global properties are described by local
charts. But, here, localization means: restrictedbilian
sub-algebras.

Contrarily to the case of the one-mode algebra of the

square of white nois§=sl(2,R)), the QSP associated

with the Fock representation of the one-mode oscillator
algebra give a rise to only Gaussian and Poisson
processes. This is still true even in the infinite mode, i
when taking the test function’s space to be
L*(R) n L”(R) (see [1], [2], [6], [12] for more details).
But in connection with the quantum decomposition of
classical random variables, the inverse procedure of the
tomography (see [4]and [5]), the quantum structure (i.e.,
global structure in the sense of the tomography) of
classical Lévy processes was related to the oscillator
algebra with a test functions not necessarily in

L>(R) n L”(R) . This led us to modify the test

function space in order to reveal a such classical
sub-process and highlight statistical information supported

In the quantum probability theory, a quantum stochastigy them.
process (QSP in the following) associated with amive |n view of Fock space factorization property, the

(3-Lie-algebra may cover infinitely classical processesxpected sub-processes are of Lévy type, i.e., their
i.e., it has many classical versions or sub-processggobability laws are infinitely divisible. Then, the
Usually, it is not easy to identify these classicalcpsses. classification of the classical copies of the QSP
Despite the principle dlgebra implies statisti¢s the pased on the Lévy exponent.
initial algebra determines the statistics of such as&mt  This paper is organized as the following: Section 2 is a
QSP: Concrete examples have shown such difficultiggeliminary which can be read diagonally by specialists in
when identifying these versions. The main idea of thguantum theory. In this section, we give a detailed
tomographyof QSP is the following: background on the notion of bosonic Fock space. We also
Giving a QSP associated with a suchLie algebra, recall important notions and results around fundamental
whenrestricted to self-adjoint abelian sub-algebraghat operators as well as the creation, annihilation and
statistical information can be deduced and what is thsnservation operators. Next, we give the Lévy-kinchine
classical structures arising from QSP? formula which help us to identify such sub-processes. In
This idea was supported by the local Kolmogoroviathe third section, we introduce the notion of adapted
aspect of quantum probability theory, i.e., any QSPahasoscillator algebra w.r.t such space of test functions &nd i
fine classical structure. Exactly as in differential gettyy  corresponding QSP. Then, we bring out the involved
every manifold is locally Euclidean (in a topologicalclassical sub-processes and we compute theirs
characteristic exponents. In Section 4, we identifyhsuc
copies via theirs Lévy exponents and we demonstrate that
many classes of Lévy processes can be sub-processes of

"I Special thanks to Qassim University and its Deanshiof
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the initial quantum one. That is many Lévy processes aridefined adjoint). We extend them by closure, while
from tomography of QSP associated with the oscillatqéeeping the same notations (¢) , A (¢) , they are

algebra. mutually adjoint. Moreover, they satisfy thenonical

commutations relation€CCR):
[A#). A @]=(s.91 @

2.1. Background on the Fock Space. [A@)A@]=[ K@), K@]=0, 3)

Let H = L% (R,dx) be the complex Hilbert space of thefor anyg, ¢ 0, wherg x, y| = xy- yx is the commutator
C - valued, square integrable functions on R with scal%rndl is the identity operator df (%) .

product, denoted by.,.,) which is linear in the second

Il. PRELIMINARIES

Given an unitary operatbr of H, it is possible to rise,

variable. in a natural way, this operator into unitary operat
We denote ) n )
Y Yoo ry)of r,(H) by putting rV):= kD:IU,when restricted
n times to H™ fornz=1, and equals to identity, ok, . This
the n-fold symmetric tensor product oft, when for n=0, operatorI'(U) is called thesecond quantizedf U and it
it is identified to the one dimensional spagé:=Co, is easy to check that
where & is a unital vector and one calls it vacuum vector. F(UV*) =M(U) F(V)*

The symmetric or bosonic Fock space ovéis defined

by If @:R - R is a real valued function, then the

oo associated multiplication operatdv , (which is not
r(H):=0H™ (1) . . . . .
n=0 necessarily bounded) is self-adjoint. Tlubfferential

An elementf of I' (H) is a sequencef =(f ) ,with second quantized\(¢) (or the conservation operatyrof
f,OH™ and also we writef :an. The scalar the self-adjoint operatoM ,of His defined via the Stone
n=0

theorem (see [10]) by

product, orf' (H) , and the associated norm are given by , )
r(e")=¢w, wr

(f.9)=2(1.9.) F= (f) o 9= (G)o OT (H)

nz0 When @:R - Cis a complex valued function, we
and decompose it as a complex sum of two real valued
2 2
IET =220 F11, = () OF ((H) functionsp= g +i @,. We define its conservation operator
n=0
by

We definey, , the exponential (coherenf vector in
I, (H) associated withi OH by

_ fOFI

N = Na) +iNg)
HenceA\(g) s linear ing.

P, = RERUNES: The second quantized operatorfacts ore by
= n! FU)y, :=puUf
The set of exponential vecto{sp, , f DH} is total and |1 tol10ws that
linearly independent ifi (/) . Moreover, we have d .
/\(¢)ﬂ)f = d_ lbve = A (¢f)ﬂ)f
<’lbf"lbg>=e<fvg>i vagDH SS=O

Denoting ¢, the subspace of (%), generated by the It i well-known that the operators™ @ and £
set of the exponential vectors. Then t@sonic creation forg 07, are well-defined on the set of the exponential
andannihilation operators are densely defined on the FockectorsE by their series. Moreover, they act on this set as
spacd (H) , by their actions oa as follows: follows:

d P, =y, @O, =y, fOH

AG)b; =(@, F)b A (@)U s The following canonical commutation relations hold

Notice that A'(@) is linear in ¢ , but A (4) is weakly on the set of the exponential vectclrs
ontidlinear. [AN@D, A @)] = A (@); [N@), AB)] =~ Aa);

It is well-known (see [9] and [8]) that the operato [A(@).A(g)]=0
A" (¢) and A (¢) are closable (they have a densely
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2.2 Lévy Processes and Infinitely Divisible Laws
It is known (see [11] and [7]), that anpfinitely
divisible probability measurex on R is canonically

associated with a tripl¢a, o, ) such that:

— ais areal constant
— [is a positive finite measure oR with

o’ =p({oy)

— denotingjr the Fourier transform ofy and ¥ , the

function
— _ JZ xt _1q_ iXt .
U(x) = iax 7x2+ R\m(é l+t2jv(d'), xOR,
(4)
where
2 5
v(dt) = 1:: dA(), tOR\{O} ©)
one has
a(x)=e'®; xOR (6)

Conversely, given any such a trile,o, ), there

exists an infinitely divisible probability measu@ R
whose has the form (6) withgiven by (4).

The function¥ is called theLévy—Khintchine functign
or the characteristic exponentof g and the triple

(a,a,ﬂ) is called a generating triple for the measure

Finally, the measure on R\{0} is called theLévy

measureof u.

I1l. CLASSICAL STOCHASTIC PROCESSES
THROUGH THE OSCILLATOR ALGEBRA

Definition 1: The infinite dimensional oscillator algebra

over H =L%(R) is the complex3-Lie algebra £, (R)
with linearly independent generators
{K@. K@) AD)Lpg 002 R)N L R)

and relations

[A @), A @]=(.91 )
[A@, A (@)= £ K (¢*9), (8)
[A*(#). A @) ]=[A@).A@)] =0, ©)
(K)*(P) = AP, A(9 =N9, (10)

wherel is the identity operator dH with the notation
g =g g =9
The mapsg— A'(@),A(p) are linear in @ while

@ A (@) is anti-linear.
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The fundamental quantum stochastic processes
associated with the oscillator algebra are giventhsy
following relations:

At (p=A (X[o,t] 0g; A9 = /\(X[o.t] my)
Recall that these stochastic processes act onitherH
space

r(L (0.t %)) =r (L2([0.10 %))
The more general quantum process associated to
L(R) is given by the complex linear combination

X, = A (g)+ A(8,)+ N (9 + U1,
where ¢,,¢,,90L*(R)n L” (R)and A0C.

Denote by C , the family of classical stochastic
processes associated with the algebfa (R) (i.e.,
sub-processes f, ). It was shown (see [1]) thaf can
not recover a large class of infinitely divisibleopesses.
At least, the three non standard Meixner classesn{@a,
Pascal and Meixner-Pollaczek ) are notCin This
abstraction is due to the fact that the test fomdtiin the
argument of A* are bounded (see Def 1). Our aim is to
adapt the oscillator algebra in order to includarge class
of infinitely divisible processes. For this goalgevshall
extend the test function space at the level ofattgeiment
of the conservation operator.

Definition 2. Let. M be a space of test functiori® - C,
closed under complex conjugation and Iét be the
sub-space ofH given by

S={¢0H; @...q¢0H 0Og,...qOM n=
The adapted oscillator algeb@’, (R) w.r.t the space

osc

M is the complex3-Lie algebra generated by the set

{A@). K@) A@ L5408, 90M, i=13
with relations given as in equations from (7) t0)(1
Remark 3
1. Unlike the definition (1), the test functiongpaaring in
the definition (2) are not necessarily bounded. nThe
if M#L"(R), the multiplication operators\, are not

bounded for allpO M . For this, £'._(R) can be

considered as the unbounded form of the oscillator
algebra. The transition to the unbounded form giile as
more degree of freedom at the level of test fumstion
order to recover a large class of infinitely dibisi
distributions.

2. From the definition ofS , clearly that (8) make sense.

3. In the definition of S, the condition

(p0H; @..gpOH  D0@g,.....g OM)

can be rephrased (with help of the polarizatiomida) as
follows:

g¢OH

osc

OpOM OnON (11)
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4. The constraint thatM is closed under complex E(e™) = é"@,
conjugation was given to guarantee the meaning Where
relation (10). '

5. Note that a such pairS, M) exists, in fact we can

takeM = L7 (R), thenS ="H . But it was shown in the
paper [1] that this choice can not give a rise L
process such the Meixner class. For this reasbmust

be a proper sub-space @1 .

in obvious notations?+ is the cummulant
functionX, .
For the existence of the classical sub-processé§ ,of

we shall find the abelian self-adjoint (AS) subedigas of
the adapted oscillator algebfg_ (R) .

Proposition 4

Using Equations from (7) to (10), one easily deduce Let £' . (R) be an adapted oscillator algebra as in Def
that the quantum stochastic procesiesy and A, obey 2. Then the abelian self-adjoint sub—-algebras tikeer
the following relations: the form

- . = Lie{ A"(9)+ A(9)+ AL, pOK,A0R 17
[A6). A @)]= 810, (12 L=Le{A @)+ K@)+ o b

(13) wherel is any real sub-space dft, or the form
[At(¢)1A‘(¢)]:iA‘(¢‘¢), = Lie{ KD+ K (EQ)+N@+ ML pOK, ) DR}
(A (). A (9,)]=0 (14) (18)
(15) wherefis a fixed complex valued function and

N ,/\ = 0, n
[ t(ﬂ) t(%)] IC{ = ﬂ Lé (R,”‘{ (dX)) 19

- + * — nx1
(A)*(P) = A9 (A)D =N ae (19)
for all ¢'¢i _DSand oq oM, i=12. ' /75(dX):|<((X)|2 dx
3.1 Abellan _'T:ub—algebras of £'(R) and Remark 5
associated classical processes 1. Note that there are many adapted oscillator algebra

One O_f the ba_S'C tenet of quantum probability be-the and this depends on the choice of test functiopace
(X,),,, is a family of operators acting on the same Focky Consequently the forms of their sub-algebras also

spacelL(H) with vacuum vector Q and ()2) is a depends on this choice.
s 2. For the first form (17), we can choas¢= L (R),

then, under thenk 0§ =X .

additional analytical conditions which are automwalty 3 For the second form (18), there is many choafe§
satisfied in the case we are considering, therstex

classical stochastic proce@{t) on a some probability

self-adjoint abelian sub-family dfX,)

!

which implies the variety of choice oM. For example
the choice M =K is convenable which implies thaf
spacee, H,P) such that, for all bounded complex valued. tains the sub-spagf

-

taJ

Borel functions ¢,,4,........ #, .nONone has 4. Note that the conditionp C; is equivalent to

E(8,0)8,(Y,)--#,(Y)) = (2.8, (X 8,(% )-8, (X 2) FEOLEMR)=H On=z1. (20)
In particular, the characteristic function (JK) ,is given  (of Proposition 4).

jin}
by Let us consider the more general form of elemerits o
L' (R) as:

X(0,9,9.4)= A" )+ A @)+ N\ (@)+ AL,
(1, @,9,A)0S8* x MxC.

X, (or a classical version of, ). . L )
We apply the above general statement to the caseTinen’ X@.4.¢.A)is self-adjoint, if and only If; B
which the process AT (L) + A () +N(@) +A1= A (b)+ A (@) +A\(p)+A1.
X, =A@+ A(@)+A () +1U1, t=0, This gives ¥ =¢,F(¢) =0and AOR.
acts on the noise spade(L’(R,,H)). Then such We denote this self-adjoint element by

. = A" + A + +
sub-proceséxt) , with respect to the vacuum vector, x(¢’¢’/1)_ K@)+ A @) /\((_0) _/]1
120 whered OR andg is a real valued function inM .
can be identified to an independent increment dpera
process and its characteristic function is given by
Copyright © 2015 1JISM, All right reserved
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Clearly X(¢,¢,A) belong to an abelian sub-algebra ofCorollary 6: The classical sub-processes associated with

L' (R), ifand only if,

[X(#.0.2),X(@" @' A7 =0
Upg'OUM,, ¢,¢'0S, A A0R
whereM, 0 M andS, O S are two subspaces @ff and

S respectively.
On the other hand, using equations from (7) toaf®)
the fact thatg and ¢' are real valued functions, one has

[X(@.0.0), X" 9] =
23((¢.8)) 1+ A" @ -0'9)-A @ -99),
which gives

,0Hh)=0 O¢,p'0S
3((g.¢))=0 Tp.0 TS, -

and
o' =g’ Op@'0M,, ¢,6'0S,. (22)
Note that from Eq.(21), we deduce that the spaghas
a real structure (i.e., the inner product is redugd in the
sense that{g,¢) DR 0¢,¢'0S, ).
From Eq. (22), we distinguish two cases:
Case.l: p=¢'=0
In this case, Eq.(22) becomes trivial. Hence A%latg
is generated by the elements of the form
X(g,A)= A" (g)+ A (9)+ 11, pOK,A0R.
where we have denoted the real sub-spggby K .
Case. ll: ¢£0,¢'#0
Eq.(22) gives
¢_9

- Op¢'OM, 0¢,4'0S,.
9 @

Then ﬂ
@

exists a functioné : R - C such that
¢ =<EpULE(R)

the adapted oscillator algebrg’

osc

(R) take either the

form

X, =X (9.1)= A(p)+ K@)+ vl (23)
or

X =X (@A) = KD+ Alp+N(@+ 0l (29)

where the test functions are given as in Propos{@) and
AOR.
3.2 Characteristic Functions of the Classical
Sub-Processes

In this subsection, we investigate to identify thes
classical processes by computing their charadterist
functions in the vacuum state. For this, we neeel th
following lemma.

Lemma 7( See [3])
Let’ H be a separable Hilbert space an@( be the

bosonic Fock space oveH . Let T be a self-adjoint

densely defined linear operator oft{ . Define the
functions g, e by
e -1 g€-x1
= X = , XadcC
& < e( ) 2
Let us consider the operatorg(iT) and of

e,(iT) defined via the spectral theorem. Then for all
udH belonging to the domain o (iT)and ofe,(iT),
the following identity holds on the domain of the
exponential vectors:

i A" (U)+ A (U)+A(T + i C
e'( (WA (+A(T) _ EWEM E® g (o5

where

u=ig(iMu u=-ig-Muy=-(ue(iTh (26)

is a constant function. Consequently, theréroposition 8: The classical sub-procesgésgiven by

(23) is a gaussian process with characteristic reapo

W(2) = izl —||¢||2%.

In this case, EQ.(21) is automatically satisfiedd anproof. Since

AS-algebra is generated by the elements of the form
X(@ )= N R+ A )+ N (9)+ AL, 9OM, AOR.
Finally, according to the condition (11), we dedtlat
Po=¢"0H OnON,
which is equivalent to
JgEO0H On=1.
This gives

[ 1o " [€(9]" dx< +e0 13, 21,
or equivalentlyO L3 (7,) 0O, 21.
Finally @O, given as in (19).

X, =X (@A)= A @)+ A(g)+ 0l
Then
g7 = A @)+ K@)+ 0D

— & (on D)+ A (xpoy O (#)+ 20D

o (A" (o D2#)+ A (xp0.1 0 (#) v

Settingu =X, 0 2, T=0.1t is clear that all conditions
in Lemma (7) are satisfied. Then, one obtains

u =ie(O)u=iu, u,=-ig(O)u=-iu
and
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y==(u,e(0)u)
= —<x[0,t] O (z¢>%xm,q 0 (z¢>>

1
= _<X[0,t] 1 Xjo,1 ><Z¢:E Z¢>

2 Z2
=-t|g|"=.
lol*2
Then
eizf(t = & (W) dNO) & (-iu) rits
= g (W) g (-iv) g+ith
This gives

B(e™ ) = <Q & Q>
= <Q,e‘“““> e 1) g Q>
= gt <e‘\’““>9, & Q>
= o
_ g

) 22%
I[IZ/]—H¢H 7]
=e
- et\I/(z) ,

where
. 2 Z2
U(2) =iz -|g| >

This completes the proof.

Proposition 9: Let X, be the classical sub-process given

by (25). Then its characteristic function is giumn

E(eizi‘): ar@ 27)
where
_ goy 4 1Z¢(X)
¥(2) |20<+'[R[éz 1 1+¢f(x)}’7"(d))’ (28)
with
[ _#(X
a=), T+ (X)n{(dX) (29)

Proof. We will prove Proposition (9) in two steps:
Step.1. Since

X = X(@pA) = K+ KEp)+N (9)+ 0l
Then

e = & ( R(ED+ K(ED+N @)+ 1)

= @ W WA (ER+A(T) gzv ,

where
U=XpqH(ZQ) and T=M ., =Xpq 0(20)
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Cleary all conditions in Lemma (7) are satisfiethem
we obtain

¢ =g (Y &7 &y
Note that it is not necessary to explicif andu, . In
fact, we have

B(e™) = (0, é%0)
= <Q’eA*(q) N () izt Q>
— iz <eA‘(La)Q, @M & () Q>
= gtz <Q ghm Q>
=" (Q, Q)

= ey+izl/1
Now, it is sufficiently to express.

(30)

Since
&(iT) = & (X0 0 (@) =X oy 0 6( i7).
Then from Equation (26), we get
y=—(ue(Mu
= ~(Xo0 0 (20 X0y U & (8) (X0 0 (£9))
= ~(Xpou Xpou {20 & (i2) Z)

_ & — iz Y -1
==t 20—

=t[ (€ ~ iz -D[ER dx
:th (€ — iz ¥ -1, (dI¥.
Finally , Equation (30) gives
E(eizil) = et(iquJ-R(éwm_im X)_l)”‘((d») = é\I'(Z)

Z( 3¢ X dx

where¥ (z) is given by

U(2) = iz +jR( &9 — iz 3-1)n7, ( dx.
Step.2. Using (31), we obtain

(31

_ oo _q_ 12X iz %
qz(x)-le+jR[é““ 1 T+ 7 () lzp(>9+1+w2(x)}7((d>)

=izA +jR[éZW> —1—%}7{@)
+IR£_W(X) g0

Ao

+iz[/1 +-[R[1+¢g)(x) —ﬂx)}n‘,(dx)]

P A )
_|z{/l R1+¢2(x)f7‘{(dX)J

}Ug(dx)
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Stie-al B Lo
_ iZ@(X) Class I. Characteristic exponents with a positive discrete
+f e -1~ 7 () ' i =
1+ (%) ¢ Lévy measure having a suppoupgv)={ 8 g a@....}
iza() and satisfying (34), i.e., its Lévy measure is gity
—i 2000 _q _
—Izmjm[é 1 1+¢2(X)]f75(d><)- v(dx) = o, 4, (d), o, >0, g OR (36)
k=1
Note that the condition (20) guaranties the existesf the with
integral in th;equation (29). In;\ct we have Z@kafn <+o0 [n>1 (37)
(9 AP
J.]R 1+¢2(X)/7‘,(dx) ‘IR 1+¢2(X)|5(X)| (d3 Class Il. Characteristic exponents with a positive
» continuous Lévy measure having a support, the
<
‘IR|5(X)¢(X)| X< oo interval (a,b) , i.e., its Lévy measure is expressed as
IV. | DENTIFICATION OF THE CLASSICAL follows:
STOCHASTIC PROCESSES X/ (¢ 1) v(dX) = F(QX(ap (R0 < a< b+, f(3>00X3(ah
(38)
In this section, we will show that how the charaste with
exponent¥ in (28) can recover a large class of Lévy I bx2nf(x)dx<+oo On>1
processes. In fact, it is sufficient to consideiyotwo ° (39)
classes of Lévy exponent which are fundamental. Theorem 10: Letv be the Lévy measure given as in

As expected, in view of Equation (28), the chanastie ~ (36). Then, the functionSandggiven by
exponentl looks like the Lévy exponent, appearing in the ©
Lévy—Khintchine formula (4). Thus, if there existpaire ¢ (*) = PN CEDIE I E (40)

k=1 k=21

(#.¢) satisfying satisfy (32). In this case, the classical stochagtocess
An,)=v (32) X{ (@A) has the characteristic exponent (33)
one can use the measure-image theorem, to obtimetli  corresponding t€lass 1.
expression oW as follows: Proof. To prove (32) for (¢,¢) given by (40), it is
. gu_4_ i2U sufficient to prove
U(z) =iz + R\{O}[éz 1 o0 )u( dy, (33)

[ o(@®)n (9= [ o yv(dy

which corresponds to the Lévy characteristic expane for all positive borel function
We will discuss the choice ofg,¢) under condition (32), since g(¢(0) =Y o(a)x ' (3. Then
- [k, k+1[ :

(i.e., giving (33)) whereU K, , then we will illustrate our ka1
result by a simple examples. J.R 9(@N)n: (=3 o @) ([ k k1]
Recall that the conditionp K, is equivalent to (20) ! 1 )
which becomes as follows: _gg(a“)-[k [€09]" ax
jR X2"(dx) < +0 On=1 (34) " 2
= N (X ] dx
This implies that, only Lévy measures having finite ;g(a‘()-[k [,Z;{\/OT’X“'“”( )]
moments of order pair will be considered in oudgtu 1
On the other hand, sinceis a Lévy measure, then it :Zg(ak)jk [ZOL,-X“,M[(X)J dx
satisfies ke 2
f minfa.c ) 09< v & ST S
But this condition is automatically satisfied. bt ; (@) =
. ) _ =2.9(8)qy.
I min(1,x*)v (dx)= j‘x‘ﬂ XU (dx)+J.leu ) =t

On the other hand
2
< stlx v(dx) + jMZl X v( dy

=] ¢ u(on, [ atywian=] o »@um dxj
which is finite from (34). => 0(a)
In the following, we consider two classes of Lévy Kt

exponent. which completes the proof.
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Note thatpbelongs to the spadé . In fact condition - Px
tpoelong padg which implies thaff (x) =— and @,b)= [0+ [.
X

(37) implies (34) which is equivalent to 20).
Example 11(The Negative binomial process). We will choose a functioné such that ¢ obeys the

The Lévy measure of the negative binomial procesgifferential equation (41) with conditiogy1 ) =0, +od].

with parameters >0and 0 < p <1is the measure defined In our case, the differential equation (41) willdgressed

on N* by as follows:
+00 _ k " 2 42
u(dx)zzc(lkp) 3, (% y'=ye[E(3, DL (42)
_ k=1 Let us fixing a functioné and assuming that it satisfies
In this case " , " ,
-5 b o IO a5 im [0 en=o
X)=>,|=@a- X
; ko P Xoce Note that a suchf exists. As example, we can choose
and 1
=, t=0;
& e(l- p)* &0 =1{t’ ’ (43)
)=y == X
AX) kZ:; K X[k,k+1[( ) 0, t<o.

Theorem 12: Letv be the Lévy measure given in (38).

If the function & is chosen such thap satisfies, the
differential equation

Lo _
—W OxO Sup[ﬁ{) = J»

and ¢(1,) = (a,b), then the pairg(¢,¢) satisfies (32). In

(41)

this case, the classical stochastic proceX$¢s, 1) have
the characteristic exponent corresponding tdlzes II.
Proof.: To prove (32) for (¢,¢) given by (41), it is
sufficient to prove

[Lo(@X) (R ={ o yv(dy

for all positive borel function g.

To find a such solution of the differential equati@?),
let us introduce the function§ given by

F,(0=-E(pX,

x>0,

where
+ooe_t
=l —d >0,
B(9=], ——dt x

is the exponential integral function. We t"“¢ the
function given as follows:

oo 2
w‘,(X):—L |E@] dt  x>o0.
Consequently, the functigmdefined by

AX) = F N (w (%), x>0
is a solution of the differential equation (42).fact, we

Without difficulty, using the change of variablepyye

(u=@(¥), we get
[Lo(@)n (=] oa )y ax
=], 9(Ax) 9% f(# %) dx
:L)(Ié)g(u) f(u) du
=] 0y, 9 f(U du
=[_ g(uv(dy
where we have useg(l,) = (a,b).

Note that ¢ belongs to the spaég . In fact condition
(39) implies (34) which is equivalent to (20).
Example 13(The Gamma process).

It is well-known (see [7]) that the Lévy measuretiué
Gamma Process of order p, is given by

- px

e
v(AX) ==X o, (X) OX

F, (X)=-pE; (pX
—-e px
pX

X

=-p

e’P
x .

Then
1

P )

o 1
Swy (X)—F") (({KX))
Ax)

=we (%) Jere)
= 0} () p() &7
= ﬂX) epw(x) |<t( )Olz ,

where we have used', (X) :|E(x)|2.

On the other hand , we have
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@) = 9(10, +oo[)

=y’ (w (10. =) o

= 77" (0. +e)

:]O,+oo[, 2]
which gives that the pair¢s,¢) satisfiesy(l,) =(a,b).
Example 14(The Meixner process) 3]

The Lévy measure of the Meixner process
M (a,B.9)is given by ]

bx

P

L, po0>0,~m<b<m

xs){m(J [5]
p

Then, with the same assumptions as in the Gamnea cas
we easily verify that the corresponding functiop 6]

v(dx) =

satisfies the differential equation

&(x — 7
| (25)| -e P (44) [ ]
[8]
Taking ¢ =@ + @, , whereg satisfies
[9]
= lEOL T
20 [10]
andg satisfies:
|<‘(X)| 2y [11]
20
Then ¢ can be expressed as follows: [12]

#x) = Fr;l(“’fl(x))xl—w.m - Fp_zl(“’fz (_)O)XW'*"“O[’

where
pl:ﬂ—b. p:7T+b
p ' p’

and
f=52 =2

Finally, ¢ is a solutlon of the d|fferent|al equation (44).

V. CONCLUSION

Despite the role of the commutation relations, ghace
of the test functions has played an important iol¢he
determination of the classical processes correspgno
the oscillator algebra. In fact, the transitionnfréounded
to unbounded form of the oscillator algebra gavenase
degree of freedom. This led us to recover moresel®f
Lévy processes.
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