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Abstract: In this paper, mathematical modeling is done for 

the estimation of probability of there being n bacteria at time 

t using generating function with certain assumptions.  

Formula is derived to know the probability of there being n 

bacteria at time t in terms of two parameters α and β.  These 
probabilities are computed for various values of t by 

assigning certain values to the parameters.  These 

calculations are shown graphically. 
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I. INTRODUCTION 
   

If number of bacteria present in culture is known then 

one can calculate the amount of protein or DNA. 

Microbial enumeration is useful in the areas of public 

health. Microbiologists test food, milk and water for the 

number of microbial pathogens present to know whether 

these are safe for human consumption or not. Thus, the 

counting of bacteria is useful in pharmacy and 

biochemical studies. The growth of bacteria has been 

discussed by Delbruck [1], Luria[2] and Grover[3]. For 

theoretical estimation one can use the mathematical 

modeling.  Mathematical model describes a system in 

terms of a set of variables and a set of equations either in 

algebraic or differential equations, or inequalities. The 

system may be biological or physical or social system. 

Mathematical modeling is applied in the problems of 

diverse disciplines like biological sciences, medicine, 

genetics, physiology, pharmacokinetics, bio-economics 

and, business and administration. These methods provide a 

frame work for interpreting and integrating the data. The 

development of any mathematical model has two aims, 

understanding and prediction.   Some cases, it may require 

to predict the amount of bacteria present in a time length. 

In recent years, many researchers drew their attention to 

the problems in mathematical models in several 

interdisciplinary sciences. Mathematical modeling was 

initiated in 1925 by Lotka[4]. Kapur J.N.[5, 6] examined 

various mathematical models in biological and 

mathematical sciences. 

In this paper, using the mathematical modeling a partial 

differential equation is obtained for the problem under 

consideration where the probability of there being n 

bacteria as dependent variable and, the time t and number 

of bacteria n as independent variables. The partial 

differential equation is solved using the generating 

function with the assumption that there are r number of 

bacteria at time t=0. The various probabilities are 

computed for various values of time t and they are shown 

graphically. From the graph we can find the time at which 

the probability is maximal and it can be used to assess 

whether there will be n bacteria or not. 

Notations: 
P(n,t) – Probability of there being n bacteria at time t 

C(m,n) – 
m
Cn, where m and n are non-negative integers 

pm
b
(t)   t   –  probability  that a cell divided into two cells 

in time (t, t+ t)  when initial  number  of  bacteria is m 

 pm
d
(t)   t  –  probability that a cell die  in time (t, t+ t) 

when initial number of bacteria is m 

α,  β –  parameters.       

 

II. METHODS 

 

Formation and solution of the problem: 
At time t we assume that there are m bacteria in a fluid 

contained in a sterile test tube. The value m depends on 

time t. The birth rate and death rate depends on the fluid 

contained in the test tube. For example, the birth rate and 

death rates of streptococcus lactis in milk are different 

from the medium lactose broth[8]. These are also depends 

on the temperature [7].  Thus the birth and death rates are 

different for different set of conditions like temperature 

and pressure.   We also assume that the  probability of a 

bacteria reproducing in time (t, t+ t ) is pm
b
(t)  t, the 

probability of a bacteria dying in time (t, t+ t) is pm
d
(t) 

 t, the probability of more than one birth or death occur 

in time (t, t+ t) is  zero,  pm
b
(t)  and  pm

d
(t) are  

proportional to m,i.e., pm
b
(t)=mα and pm

d
(t) =mβ where α 

and β are constants. The probability of the  number  of  

bacteria remaining constant in time (t, t+ t ) is  1-

pm
b
(t) t-pm

d
(t)  t.  The constants α and β varies from 

one bacteria to the other when the fluid contained in tube 

changes.  Now applying the law of compound and total 

probability the probability of there being m microorganism 
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at time t+ t is given by Feller.W[8] 

P(m,t+ t)=(m-1)α P(m-1,t) t + (m+1) β P(m+1,t) t 

+(1-mα t- mβ t )P(m,t)                               (1) 

As t  0, the equation (1) becomes 

t

tmP


 ),(

= (m-1) α P (m-1,t) + (m+1) β P (m+1,t) - m 

(α+β)P (m,t)                                                    (2) 

Suppose 







0
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k

k
ztkPtz

                                

 (3) 

be the generating function of P(k, t). 

Differentiating equation (3) partially with respect to 

time variable t, we have 
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where 

t
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Replacing the symbol m by n in equation (2), 

multiplying it by z
n
 and taking the sum from o to with 

P(0, t)=0 and P(-1, t)=0, we get 
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It can be shown that 

z
zztkPk

k

k









 2

0

),1()1(  

)(  
z

zztkkP
k

k









 )(),(
0

 

z
ztkPk

k

k










0

),1()1(  

In view of the above equations the equation (6) becomes 
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The obtained partial differential equation is a 

Lagrange’s equation. The general solution of the equation 

(7) is given by 
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where, f is an arbitrary function. The arbitrary function can 

be obtained using the initial condition. Suppose the 

number of bacteria present at time t=0 is r, we have 
r

zz )0,(                                                    (9) 

From the equations (8) and (9), we have 
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Introducing u
z

z

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
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, we have 

f (u) =

r

u
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Thus, the generating function ),( tz  is given by 
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Note that
r

zz )0,( , hence P(r,0)=1.  Now, P(n, t) 

(n )0 is the coefficient of z
n
 in the right hand side of 

equation (12) and it is given by 

P(n,t)=
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Where, b1= ,)( t
e

 
 

b2= ),1( )( t
e

 
 
  

a1= ),1( )( t
e

  a2=
t

e
)(  

 and  

s=

12

1221
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baba 

 
Using the equations (13) and (14) one can find the 

probability of there being n (n )0   and n=0 bacteria at 

given time t respectively.  It can be used to determine the 

time where the probability is maximum to have n bacteria.  

If the probability is one or near to one then there is 

possibility of having n bacteria at this time. 

Numerical Work:  

Case 1: Assuming α=0.1 and β=0.2 the various 

probabilities of there being n=30 bacteria at different times 

are computed when initially 3 bacteria present at t=0.   

These are shown in Fig.1.  

 

 
Fig.1. Probabilities with α=0.1, β=0.2, r=3, n=30 
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Case 2:  For α=0.1 and β=0.3 the various probabilities of 

there being n=30 bacteria at different times are computed 

when initially 3 bacteria present at t=0.   These are shown 

in Fig.2. 

 
Fig.2. Probabilities with α=0.1, β=0.3, r=3, n=30 

 

Case 3: Assuming α=0.1 and β=0.5 the various 

probabilities of there being n=30 bacteria at different times 

are computed when initially 3 bacteria present at t=0.   

These are shown in Fig.3.  

 
Fig.3. Probabilities with α=0.1,β=0.5, r=3, n=30 

 

Case 4: Assuming α=0.6, β=0.4 and  the probabilities of 

there being n=30 bacteria at different times are computed 

when initially r=3,4,5,6  bacteria present at t=0.   These are 

shown in Fig4. 

 
Fig.4. Probabilities with α=0.6, β=0.4, n=30 

 

Case 5: For fixed values of α=2/10, β=1/10, r=3 and n=4, 

5, 6, 7  the probabilities are computed and they are shown 

in Fig.5. 

 
Fig.5. Probabilities with α=0.2, β=0.1, r=3 

 

Case 6: For fixed values of α=1/10, β=2/10, r=3 and n=4, 

5, 6, 7  the probabilities are computed and they are shown 

in Fig.6. 

 
Fig.6. Probabilities with α=0.1, β=0.2, r=3 

 

Case 7: For fixed values of α=0.1, r=3 and n=5 and 

β=0.2,0.25,0.3 ,0.35  the probabilities are computed and 

they are shown in Fig.7. 

 
Fig.7. Probabilities with α=0.1, r=3, n=5 

 

Case 8: For fixed values of β=0.1, r=3 and n=5 and 

α=0.4, 0.45, 0.5 ,0.55  the probabilities are  

computed and they are shown in Fig.8. 
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Fig.8. Probabilities with β=0.1, r=3, n=5 

 

Case 9: For fixed values of α=0.8, β=0.4, r=10   the 

probabilities of there being bacteria n=20, 30, 40, 50 are 

computed and they are shown in Fig.9. 

 
Fig.9. Probabilities with α=0.8, β=0.4, r=10 

 

Case 10: For fixed values of α=0.1, β=0.3 and r=10 and   
the probabilities of there being bacteria n=0 are computed 

for various time values and they are shown in Fig.10.  

 
Fig.10. Probabilities with α=0.1, β=0.3, r=10, n=0 

 

III. CONCLUSION 
 

To know the influence of α and β on the probabilities of 

population of size n number of bacteria  we have drawn 

the graphs using the MATLAB software and a program by 

assuming certain values to  n, r, α and β. If α=0.1, β=0.2, 

r=3 and n=30 it is observed that the probabilities are 

increasing in the time interval (0, 20) and decreasing for t 

greater than 20 (Fig.1). When the β is increased from 0.2 
to 0.3 the time interval of increasing probabilities is 

reduced (Fig.2).  When β>>α. the probabilities are 

decreasing with increase in time to have 30 bacteria when 

initially there is a 3 bacteria (Fig.3).  For fixed values of α, 
β, n the various probabilities are computed when there is 

initially 3,4,5,6 numbers of bacteria and it is observed the 

probabilities are increasing (Fig.4).  Similarly for fixed 

values of α, β and r the probabilities to have 4,5,6,7 

number of bacteria a are decreasing in the time interval (0, 

7)  as n increasing (Fig.5).  By reversing the values of α 
and β of the case 5 , it is observed that the probabilities are 

reduced (Fig.6). For fixed values of α, r ,n and increasing 

values of β the probabilities are decreasing in each 

case(Fig.7).  A similar situation is noticed when β, r, n 

valued are fixed  and the values of α are increasing(Fig.8).  

When n is increasing for fixed values of other, the 

probabilities are decreasing (Fig.9).For α=0.1, β=0.3 and 
r=10 the probability to have zero bacteria is one at time 

t=38 (Fig.10). 
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