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I.  INTRODUCTION
 

Many known types of negative dependence such as 
Negatively Associated (NA) and Negatively Orthant 
Dependence (NOD) etc. have developed on the notion of 
pairwiseNQD. In (Joag-Dev and Proschan [1]), it was 
pointed out that an NA sequence is NOD,
example that is NOD but not NA. In particular, among 
them the Negatively Associated (NA) class is the most 
important and special case of pairwise NQD class and
wide applications in reliability theory 
statistical analysis. Wang etal. [2] gave an example that is 
pairwise NQD but not NA. In addition, it is easily seen
that an NOD sequence is pairwise NQD from the concept 
of NOD (see [2]), but the reverse is not true. Thus, 
pairwise NQD sequences are sequences of wider scope 
which are weaker than NA and NOD s
therefore significant to study probabilistic properties
this wider pairwise NQD class. So far, many limiting 
properties on pairwise NQD sequences have been 
discussed, for instance, Matula [3] obtained the 
Kolmogorov strong law of large numbers for pairwise 
NQD random variable sequences with the same 
distribution. Wang et al. [4] obtained the Marcinkiewicz 
weak law of large numbers with the same distribution. 
Wang et al. [2] obtained the strong stability for Jamison 
type weighted product sums and the Marcinkiewicz strong 
law of large numbers for product sums of pairwise NQD 
sequences. Wu [5] gave the Kolmogorov
and the three series theorem of pairwise N
and proved the Marcinkiewicz strong law
numbers. Chen [6] generalized the results of Matula [3] to 
the case of non identical distributions under some mild 
condition. Wan [7] obtained the law of large numbers and
complete convergence for pairwise NQD sequences. Gan 
et al. [8] obtained the strong stability for pairwise NQD 
sequences. Zhao [9] obtained the almost surely 
convergence properties and growth rate for partial sums of 
a class of random variable sequences under
condition. In addition, Wu [10] obtained the strong 
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or pairwise NQD sequences. Gan 
stability for pairwise NQD 

sequences. Zhao [9] obtained the almost surely 
properties and growth rate for partial sums of 

a class of random variable sequences under moment 
In addition, Wu [10] obtained the strong 

convergence rate of mixing sequence based on moment 
inequality and the truncation method of random variables,
and so forth. 

Inspired by the papers above, we present the strong law 
of large numbers for pairwise
truncation method below, which extends the correspon
ding result of pairwise NQD random variables. Put
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��
�
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where I(A) denotes the indicator function of the event A. 

Denote �� � ∑ ����� �� , ����� � ∑���
The symbols C, C1, C2, ... stand for generic positive 

constants not depending on n. 
numbers not depending on n and log x represents 
log2(max(x, e)). 

 
II.  PRELIMINARIES AND 

 
Let �� , � � 1 be a sequence of random variables defined 
on a probability space�Ω,  , !�. Lehmann [11] introduced 
the concept of Negatively Quadrant D
sequences; we have 

Definition 1.1. Two random variables X and Y are said 
to be NQD if for all real numbers x and y,
probability density is less than or equal to the product of 
their marginal probability densities.

 
i.e. !�� � ", # � $� % !��
 
A sequence of random variables {

be pairwise NQD if  �� and �'(�and  ) * +. 
To prove the main results, it is necessary to state the 

following Lemmas; 
Lemma 1.1([11]) If random variables X and Y are 

NQD, then 
 
(i) E(XY ) % E(X)E(Y ); 
(ii)P(X > x, Y > y) % P(X > x)P(Y > y), 
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(iii) If f and g are both non-decreasing (or non
increasing) functions, then f(X) and g(Y ) are NQD.

Lemma 1.2 ([5]) Let {��, � � 1} be a pairwise NQD 
sequence with E(Xn) = 0 and :���;�
Denote  <'�
� � ∑ ��'����'�� , + � 0. Then

 

:�<'�
��; % > :�'�?
��'��

and 
 :�  @<'�A�B;� % C log; � ∑'����'��G�G�HIJ
 
Lemma 1.3([12]) LetK��, � � 1L

random variable sequence. If there exists some random
variable X such that  !�|��| � "� % C!
x > 0 and n � 1, then for any M> 0 and t > 0,

 :|��|N��|��| % O� % C �:|�|N��|�| % O� �
 
and 
 :|��|N��|��| 0 O� % C:|�|N��|�| 0 O
 
Theorem: Let {��, � �1} be a pairwise NQD sequence 
with EXn = 0 for all 
n� 1. Suppose that there exists a random variable X such 
that for any "> 0 and n 0 1, 
 !�|��| � "� % C!�|�| � "�.  
 
If there exist constants 1% r < 2 and 
such that 
 :�|�|-PQRS|�|� � ∞,   
 
then 
 �U�/-���→XYZH  � 0, �. [.   
 
Proof   For any integer n, there exists some integer 
k(n) such that 2� % � � 2���, 
hence  

 �U�/-|��| % max;	_�_;	
�  �2U�/-|��
It suffices to show that max2
���2
�1   2�
/5|��| → 0, �. [
   
 
Take 
r < µ < r + 1 and for any ̀ > 0, denote 
 

a� � b �|��|- %;	
�
��� 2���/�
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decreasing (or non-
g(Y ) are NQD. 

be a pairwise NQD � � � ∞for all n � 1. 
Then 

��; 

:��;�� .  (1) 

L be an arbitrary 
there exists some random C!�|�| � "� for any 

> 0 and t > 0, 

� � ON!�|�| 0 O��  (2) 

O�.    (3) 

1} be a pairwise NQD sequence 

1. Suppose that there exists a random variable X such 

 (4) 

r < 2 and 2> (35/2)� (5 + 1) 

 (5) 

 (6) 

there exists some integer k = 

�|�   
[. , 
 → ∞     �7� 

 

�
 � 1�.�, 

a�d � e �|��|- 0;	
�
��� 2

:� � f |��;	G�_;	
�HIJ
 
It is clear to check that 
 :� � :�a� � :�a�d

⊂ f  h�����h 0 2�/-`;	G�_;	
�HIJ

0 2���/�
 � 1�.�/ . 
 
Hence 
 

> !X
��� f |[�| 0 2�/-`;	%�_;	
�HIJ  

% > !X
��� �e;

�
0 2����
 � 1�.�/
� > !X

��� @;	%�� �� � �;. 
 
If we can obtain that  I1<∞ and I2<
Lemma, expression (7) above holds.
Firstly, we will check I1<∞. By inequalities (4),
above, and 1%r<3<2, it follows that
 

�� % > > !;	
�

���
�|��|- 0 2����
 � 1�./X

���
% C

% C� > 2���∞

�1 >∞+�


� C� > > 2��� +

�1

X
'��� 4C1 > 2+!∞

+�1 j2+% C;
� 4C1 > 2++3

∞
+�+0 f+ �

� 2'���+ � 1�3k  �where +p satisfies that for + �and 1� �'U. Ywx '�y
'� �  

% C2 � Cz > :X
'�'p {|�|-PQRS|�|��2+ 
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holds. 
. By inequalities (4), and (5) 

it follows that 

> 2���X
���

! �|��|- 0 2����
 � 1�./
!
 j2++3 % |�|5 � 2'���+ � 1�3k

 ! j2++3 % |�|5 � 2'���+ � 1�3k
j2++3 % |�|5 � 2'���+ � 1�3k

f � 3 log  +|2: j� 2++3 % |�|5
k

� +p , �+ � 3 log +�S0 0 
2'+. % |�|- � 2+�1�+ � 1�3�~ 
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� C; � C3: @|�|5PQR2|�|B � ∞.  
 
Next, we will check I2<∞. By EXi= 0, and expression (3), 
(4), and (5), and Lemma1.3 and taking k su
such that �
 �  1 � 3 PQR �
 �  1��S> 0, we have
 max 2� % � � 2���}����	�}

2�/- % > h:�����
2�/-

;	
�
���%  2U�/- > {:|��|� �|��|- 0 2��
 �;	
�

���
� 2�����/-�
 � 1�./- ! �|��| 0 2�����/-�
 � 1�./-/~
%  C2U�/- > {:|�|� �|�|- 0 2��
 �;	
�

���
� 2�����/-�
 � 1�./- ! �|�| 0 2�����/-�
 � 1�./-/~
%  2C2U�/- > :|�|� �|�|- 0 2��
 �;	
�

���
%  C� 2����
 � 1�������� :�|�|-logS|�

2	�2����������� f
 � 1 � 3 log �
 �
% C� 1
SU.�./- → 0 �[ 
 → ∞. 
 
Hence  
 

2U�/- max 2� % � � 2���}����	�}_���w� k suf�iciently
 

I2% C� � ∑ !X��� � max 2� % � � 2���}���	�U
 

Since ����� � :�����is a non decreasing function, we 

have by applying Lemma 1.1(iii) above:�)
,%)%� is still a pairwise NQD sequence with mean 
zero. Hence byexpression (9) above and, Markov's 
inequalities, (1), and (2) and Cr inequality, it follows
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  �8� 
and expression (3), 

and (5), and Lemma1.3 and taking k sufficiently large 
> 0, we have 

�h
���� � 1�./

/~
���� � 1�./

/~
���� � 1�./

|�|�
� � 1�|S

suf�iciently large.Thus,
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decreasing function, we 
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For I21, it is clear to check the fact that

 C ��
;�� for any� �1 and  > 0.Without loss of

we assume  ;�
�� � ;�
�
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22
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Since 2 0 5, we can take 3 such that2 3/5. There by 
 
I21 % C¡ � C��:�|�|- log|�|� � ∞
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% C�z > �zU.���U��X
���

¢:�|�|-��a����| % C�z
% C���C�� > �@¤�� BU�-�;�

�� � 1 � 3 log�m � 1
X

���p
% C���C�� > :X

���
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% C���C��:�|�|-logS|�|� �  ∞.  
 

 
By (10)-(12), we have shown that 

with (7), it is seen that expression
the desired result is completed. 

Remark In the process of proving 
method on the proof of Theorem 5.4.2 in [12], but the 

choices of truncation random variables  � and the specific parameter 3 are di
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�� � |�|- %�2, 5� 3�5�1, 20�35/2 �<∞, one has 

% 2� � >¢:�2��a��|


��1
 

¢ �2
/5�:�2��a�� 

PQRS|�|. |�|;U-PQRS|�|  � ¢�a��� 

k 1
@log 2�

�3BS :|�|-PQRS|�|��a�� 

|�|-PQRS|�|��a��. 

such that  2 0 2 �  3 �
∞.   (11) 

�.�  
./-: �|�|-��|�|- 0 2����
 � 1�.�/ 

�; > ¢:�|�|-��a����|X
��� > 
;�.U;./-�

���  

�z > ��¤�� �U�-�;� ¢:�|�|-��a����|X
���  

1��S : �|�|-logS|�|��a����� 

logS|�|��a����� 

  (12) 

(12), we have shown that I2<∞. Combing (8) 
it is seen that expression (6) holds. The proof of 

In the process of proving I2<∞, we refer to the 
Theorem 5.4.2 in [12], but the 

choices of truncation random variables  ������, 1 % ) %
are different. 
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